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ABSTRACT

Four pinned-base steel arches with a 96~inch radius, 143.8-inch span, and uniform cross
section were cold-rolled from 4M13 sections and tested under various static and dynainic
loads uniformly distributed over one-half the arc length, A maxi;rum static load of
72, 000 pounds was applied by the NCEL blast simulator using coxipressed air. A dynamic
peak load of 64, 000 pounds was attained by detonating Primacord in the blast simulator. The
blast loading had a rise time of abcut 3 milliseconds and a decay time of about 1.6 seconds.
An equivalent triangular load-time function was used for the dynamic analysis. The applied
loads and the resulting deflections, strains, and reactions were measured. The reduced data
are presented in graphical and tcbular form.

The theoretical analyses for statically and dynamicall* lcaded arches were based on the
discrete framework which represented the continuous arches tested. A 16-bar system was
used for both static and dynamic response calculations, ind a <0-bar system was used for
natural mode and frequency calculations.

In the static analysis, the effects of stress amplificaiion, misalignment, and elastic
supports on the response of the arch were considered. Due to the strain-hardening
characteristics of the arch material, the idealized stress-strain curve was represented by a
trilinear curve rather than by the usual bilinear stress-sirain curve.

A simplified dynamic analysis gave results reasonably close to those from more
rigorous methods; the values were on the conservative side. Nearly complete correlation
between the theoretical and experimental results was obtained.

This work was sponsored by the Defense Atomic Support Agency.
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INTRODUCTION

The purpose of this report is to provide information on the theoretical and experimental
behavior of two-hinged steel circular arches subjected to uniformly distributed static and
dynamic loads on one-half the arch. Many theories and procedures have been advanced in
recent years for determining the eiastic and elastoplastic response of structures to uniformly
distributed dynamic loads. However, due to the lack of large dynamic testing facilities, there
have heen few direct comparisons of the theoretical and experimental behavior of large-scale
models.

The blast simulator at the U.S. Naval Civil Engineering Laboratory can test nearly
full-sized structural members under transient loads up to 185 psi.

This report covers the third and last phase of tests on structural steel members; the
first dealt with the static and dynamic behavior of portal-frame knee connections* and the
second with static and dynamic behavior of pinned- and fixed-base portal frames. <Y For the
third phase, four steel arches of 96-inch radius and 143. 8-inch span were designed, fabri-
cated, aud tested. The primary objectives of Lhie test series were to obtain information on the
behavinr of members subjected to static and dynamic loads and to examine the behavior and
failure mode of the members under static and dynamic loads. The information obtained will
be used to recommend changes in the present design criteria of structures subjected to blast
loads.

The work was accomplished under Work Unit Y- F008-08-02-102, Blast Resistance of
Structural Shapes, and was sponsored by the Defense Atomic Support Agency through the
Naval Facilities Engineering Command.

Wherever possible, symbols used in this report are those recommended by the Defense
Atomic Support Agency. A complete list of symbols appearing in this report precedes the
appendixes.
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EXPERIMENTAL TECHNIQUES AND PROCEDURES
Design Procedure and Description of Arch

Two criteria in determining the size and strength of the antisymmetrically loaded arches
to be tested were that they should fit in the blast simulator and that the maximum load should
be limited to approximately 50 percent of the capacity of the simulator. It was determined
that the central angle of the arch would be 97 degrees and the radius to the neutral axis would
be 96 inches. The width between the skirts of the simulator is 8 inches. In previous tests, it
3 was determined that the most efficient width of the test member should be between 7-3/4 and
7-1/8 inches.

With these dimensions and loading conditions, the mechanism method of plastic design
’ i was used. $° It should be noted that the load produces sidesway and that plastic hinges

develop in the vicinity of the quarter points, b and d, as shown in Figure 1. The instantaneous
center of rotation then lies at the intersection, c, of straight lines drawn through the hinge

ity i W g
o
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points, a and b, and d and e; the central angle is designated ¢,. For simplicity, the load, w,
: has been replaced by two resultant forces, F; and Fy, acting normal to chords ed and dk.
= From Figure 1, the following geometrical relations can be obtained:
4
H
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External wozk for very small deflections is determined as follows:
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instantaneous
center of rotation

N
Qo
_ 8% '
A VA 0
H

&

Figure 1,




e e sty BTSN

v ae Al i pe RUGE 0 LSRG | 1 ) 1R et on

since

¢0)
F= l-‘l = I-‘2 = 2Rw (sin—é—

4 = 2RY (sln%)
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' gin =
FR Y (sln—89'+-———3%-)
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or by using Equation 1, and employing identities

¢0
Wg = 2FRY sin 3

Internal work is determined as follows:

From Figure 1, it can be shown that

W, = 2M (¢+w')=4M wcos&
I~ “Tp P 3

Equating (3) and (4) and solving

Since ¢° is equal to 97 degrees

(3)

4)

(5)

(8)




Using a radius of 96 inches and a design yield load of 75 x 8 or 600 1b/in., the plastic moment
is calculated as

Mp = 267,384 in, -1b
The plastic modulus, Z, is then

267, 384

Z = T =m=6.68m.

y

3

Ioz

By referring to a plastic modulus table, a reasonable section was chosen as

4M13 Ib

Z = 6.1 'il'l.3

A section with a smaller plastic modulus was selected for testing in the blast simulator
because the width of the top flange would have to be increased to about 7-3/4 inches. After
the arch was rolled into shape, two steel strips 1-7/8 inches by 58 inch were welded to the
top flange of the arches as shown in section B-B of Figure 2. The total area of the cross
section was 6. 16 in.“, For this cross section, the elastic neutral axis was computed to be
2,64 inches above the base of the lower flange and the moment of inertia was computed to be
14.84 in.4. The plastic neutral axis was found to be 3.58 inches above the base of the lower
flange and the plastic modulus was 7.15 in. 3. Needle roller bearings were fastened to the
transverse web stiffener (as shown in Figure F-1) to reduce friction as the arch deflected.

Loading System

The blast simulator (Figure 3) was used to t~st the antisymmetrically loaded arches.
The load applied simulated a blast wave from a. ..r burst initially striking the surface of the
arch at one of the quarter points and also perpendicular to the longitudinal axis. The response
of the arch, as the blast wave engulfed the entire arch, was not taken into account in this test
program. For testing these arch+c, special extension plates, 6 feet in height and 8 feet in
length, were bolted to the bottc:: of the blast simulator and tied together by three sets of
massive collar beams to preveni separation. Figure 4 shows one side of the extension plates
removed, exposing the arch to be tested. Static loads were applied by pumping air into the
simulator from a compressor. Dynamic loads were produced by detonating Primacord within
the firing tube in the simulator. 6 A blast loading was produced which had a rise time of
approximately 2 to 3 milliseconds followed by an experimental decay of controlled duration 1
{Figure 5). ILeakage of the static or dynamic pressure was mitimized by a neonrene seal ‘
placed on tap of the flange (Figure 4).
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Figure 5. Typical load-time curve.
Instrumentation

Instrumentation of the test specimens consisted of strair gages, pressure cells,
deflection gages, and an accelerometer located as shown in Figure 6. Information on the
measuring instruments is presented in Table 1. The recording equipment is shown in Figure 7.
In addition to the transducers listed in Table 1, deflectilon measurements were also obtained
by the use of a rotating drum gage, and the reactions were measured with a pair of
dynamometers (Figure 8) at each end of the arch. The rotating drum deflection gage revolved
at a constant speed, recording deflection and as the arch deflected, a pencil attached to the
end of a taut piano wire inscribed a deflection-time trace on the graph paper.

Test Procedure

The general test procedure for the arches was as follows: the arch was vibrated, a
static load was applied (to failure for one arch and to approximately 60 percent of yield for
the other arches), and a series of dynamic loads was applied to the arches that were not
statically loaded to failure.

Two types of vibrational mode tests were conducted. The first was to excite the lowest
natural frequency of the twe-hinged arch in the deflection mede and the second wag to excite
the arch in the compression mode. For both types of tests, the arch was wedged upward by
using a piece of timber at the desired location (at the quarter point for the deflection mode and
at the crown for the compression mode). The timber was suddenly knocked out with a sledge
hammer. The subsequent vibrations were recorded on the oscillograph; a typical oscillogram
is shown in Figure 9. A smooth, continuous trace indicated that the specimen was vibrating
freely in the blast simulator; the natural period of vibration was obtained from these records.
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Figure 8. Horizontal and vertical reactions at the loaded end of the arch,
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Table 1. Instrumentation Usecd in Tests

Measurement Description Type or Model Manufacturer
Load 200-psi pressure cells PA208TCA-200-350 | Statham Instruments,
Incorporated
Acceleration | 200-g accelerometer A5A-200-350 Statham Instruments,
Incorporated
Deflection 6-, 10-, and 15-inch linear | 108 Bourns, Incorporated
potentiometer
Strains SR-4 electrical resistaace | A-8-1, A-R-1 Baidwin-Lima-Hamilton
strain gages Corporation
Whittemore strain gages 2-inch type Baldwin-Lima-Hamilton
Corporation
Qther Recorder with 36-channel 5-119P4-36 Consolidated
oscillograph amplifiers 1-113B Eleccrodynamics
Corporation J

The first arch was tested statically to failure; the remaining arches were loaded
statically to approximately 80 percent of the yield load and then tested dynamically in the
elastic range. This was done so that the elastic static response of the arzh could be compared
with the elastic dynamic response. Typical dynamic test data recorded on the oscillograph
are shown in Figures 10 and 11. The final dynamic load on each arch was in the inelastic
range so that information on the dynamic response over a wider range of pressure could be
cbtained.

After a specimer had been tested completely, photographs of the overall arch, including
closeups of the entire specimen, were taken (Appendix F),

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

Tensile Coupon Tests

Static Tests. Standard tensile test coupons, 2-inch gage length, were fabricated from
the flange strip, the web, and the upper and lower flanges. Figure 12 identifies the locations
and symbols of static test specimens, It should be noted that the specimens were cut from the
mid-spans of the arches where very little bending moment took place during the tests. It was
assumed that the specimens were representative of the arch material before tests. Typical
stress-strain curves for each location are shown in Figures 13 through 18,

Table 2 summarizes the results of static coupon tests, The average values of yield
stress at 0. 2 percent offset were 56,200, 41,700, 55,100 and 60,500 psi for the web, flange
strips, and upper and lower flanges, respectively; the average values of ultimate strength
were 70,000, 64,400, 70,700 and 7 °00 psi, re;pe ctively, the ayverage values of the elastic
modulus were 30.0 x 105 30.9 x 1 , 27.9x 108, and 26.7 x 106 psi, respectively. It should
be noted that the 4M13 section was less ductile than the flange strips. This fact was reflected
in the 2-inch elongation values of 34.3, 22.0, and 25.8 percent for the flange strips, the web,
and flanges, respectively; this was due to the fact that the 4M13 section had been strained
beyond the strain~hardening point during the cold-roll process (Figure 17). Further evidence
18 shown in the stress-strain curves of various specimens of the arch. No characteristics of
a definite yield plateau are evident in the stress-strain curves of Figures 13, 15, and 18 for
the web and upper and lower flanges of the 4M13 secticn.
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Figure 17. Cold-roll process of the arch.

Table 2. Static Properties of Steel for Antisymmetrically Loaded Arches

Location Yield Stress Elastic Inelastic | Ultimate | Elongation
of Arch No. | 0.2% Offset| Modulus Modulus Strength | in 2 Inches
Specimen (pst) (psi) (psi) (psi) (%)
Web* AH-2 57, 100 31.0x108 ce- 70, 000 21.0
AH-3 56, 500 28.9 - 70,000 24.0
AH-4 55, 000 30.1 - 70,000 21.0
Average 56, 200 30.0 70, 000 22. 9
Flange | AH-2 43,200 30.4 7.29x105 | 64,600 36.0
Strip AH-3 41,800 31.6 5.84 65,900 32.0
AH-4 40, 200 30.7 8.60 62,700 35.0
Average 41,700 30.9 7.24 64,400 34.3
Top AH-2 57,700 21.3 --- 71,000 23.0
Flange* | AH-3 53, 800 29.0 .-~ 70,400 25.0
AH-4 53,800 27.4 - 70,600 29.5
Average 55,100 27.9 70,700 25.8
Bottom AH-2 58, 500 26.3 ——- 72,100 ——
Flange* | AH-3 62,600 26.9 -—- 73,600 ~ee
AH-4 60, 500 27.2 -—-- 72,600 ~—-
Average 60, 500 26.17 72,800

*The material was deformed beyond the strain~hardening point by the cold-roll
process during fabrication of the arches,
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Dynamic Tests. To determine the increase in the vield point of the steel under dynamic
load, tensile specimens were fabricated and then tested with the Laboratory's 50, 000-pound
dynamic materials testing machine. 7 The mackine has 2 maximurm static capacity of

50, 000 pounds and head velocities up to 15 in, /sec. With a booster facility, the static load
capacity can be increased to 80, 000 pounds and the head velocity can be increased te 30 in./sec,
Statically, the piston stroke is 4 iaches; at higher velocities it is 0.75 inch. For standard
tensile specimens (0.2 in. 2 area), strain rates of 1.5 in./in./soc can be ohbirined.

Asg shown in Figure 18, the specimens wers taken {rom baoth ends of the arch, where
bending moments were smell due to hinged supports. The specimens were assuraed o be
representative of the arch material before tests,

A total of nine tensile specimens, six ‘rom the web and three from the flange, were
fabricated and tested. Dimeansions of the test specimens & -» shown in Figure 10. To determine
the value of the strain rate to be used for the dynamic irnuiie tests, the sirain rates from
S$G-12 (Figure €) were obtained fror several dynamic test.:; the average sirain rate was
0.9 in./in./sec. The sirain rate was maximam at this point bevcuse the flexural and
compressive strains were of the same sign. Typical stress-strrin curves are given in
Figures 20 and 21 for the web and lower flange, respectively, It should be noted that the
strass-strain curve of the lewer flange does not show u definite yield plateau.

Table 3 summarizes the results of the dynamic tests. The average va’ues of wpper yield
stress were 70, 500 psi and 69, 700 pei for the wob and lower flange, rcspectively; the average
values of lower yield stress were 68, 100 psi and €6, 500 psi, respectively; the average witimate
strengths were 80, 600 psi and 82,500 ps{, respectively. The average increase in the lower
yield point was 23. G percent for the web and 9.8 percent for the lower flangs. The marked
difference between the two sectictia was due to the fact that the flanges had bean stressed
closer to ultimate stress than the web.

When struciural steels are stressed above 80 percent vf the ultimate sirength, structural
properties of the material are changed. To filustrato the effgct of strain hardening, consider
a typical stress-strain curve as shown in Figure 22, I the material were stressed (o A and
unloaded, the stress-strain diagramn would return to the strain axis in practically & straight
line, AB, parallel tc the initial straight-line portion of the diagram. [ the stress were agali
applied, the yield point wuild be raised to A, the diagram following the dashed line BAC. The
ultimate strength would be practically unchanged but the ultimate elongation would be reduced,
The effect of the single loading to A ig to increase the elastic strength and to decreass the
ratic of dyramic to atatic yield points. The higher the peint A, the smaller the percent
increase in dynamic yiels point.8

Static Tests

Static tests ~* tour circuilsr arches were performed In the blast simulater ag described
earlier; the arche ‘.ere loaded along one-half their are length. For the majority of the teuts,
radial deflectiong und strains were measgured st the quarter points and the crown; horizontal
and vertical reactions were measured as shown in Figure 8. Only arch AH-1 was tested tn
failure; the other three arches were loaded to a maximum load of 243 Ib/in. During ine tesis
it was observed that the support caxt (Figure 8) moved a fraction of an inch to the right; the
exact distance was undeterminad. This was partially due to the elastic strain of the reaction
dynamometers and partiaily due to the movement of the tiedown bolts for the support cari. By
proportioning the asgumed total horizontal movemnent at the maxitnum load, the cari movement
was introduced in the theoreiical analysig as a boundary condition by assurning that the
deformation was proportional to the horizontal reaction load at Rj; this factor was taken to be
6.25 x 10-8 in. /ib,
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Figure 18. Location of specimens for the pinned-end arch.
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Figure 22, Strain-hardening effect in structural steel.
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Table 3. Dynamic Properties of Steel for Antisymmetrically Loaded Arches
Location Upper Yield]Lower Yield|Ultimate| Elongation Strain Increase in

of Arch No, Stress Stress Strength|in 2 Inches Rate Lower Yield
Specimen {psi) (psi) (psi) (%) (in./in./sec)] Point (%)
Web* AH-2 74,200 72,100 83,100 24.0 0,771 28.3
AH-2 69, 700 66,900 79, 000 20,0 0. 652 17.2
AH-3 89, 000 68,250 80,500 25.0 0.825 20.8
AH-3 73,600 72,900 83,500 27.0 1.130 29.0
AH-4 617, 500 66,750 78,100 25,0 0. 746 21.4
AH-4 69, 100 67,800 79, 600 27.0 0.652 23.3
Average 70,500 88, 100 80,800 24.7 --- 23.0
Lower* | AH-2 == 64,200+* | 81,000 22.5 0.517 9.7
Flange |AH-3 72,500 69, 100 84,300 .-~ 0.574 10.4
AH-4 66,900 66,200 82,100 --a 0. 700 9.4
Average 69, 70C 66,500 82,500 22.5 --- 9.8

*The material was deformed beyond the strain-hardening point by the cold-roll process.
**Yield point stress at 0.2% offset.

Arch AH-1 was first preloaded to 487 lb/in. in increments of 162 1b/in. There were no
appreciable permanent strains, deformation, or residual reactions observed after this test.
Data from this test are not given in this report. Arch AH-1 was then reloaded to 568 1b/in.
At this point, it was expected that certain sections of the arch would yield. The pressure was
then increased in small increments to ensure that yield conditions would be recorded. At a
load of 791 1b/in., air leakage at the neoprene seal exceeded the comnressor capacity and a
further increase in pressure was not possible. The reduced test data are presented in
Table A-1. The maximum deflection obtained was 1, 39 inches; the permanent deflection was
0.40 inch after unloading. The stiffness of the arch in the elastic range was 902 1b/in. /in.
and was close to the theoretical value of 937 1b/in./in, The strain data of Table A-1 were
transformed into moments, direct forces, principal stresses, and shears; they are given in
Table A-2,

After repair of the neoprene seal and retesting, the load-deflection curve rose slightly
higher than the point of unloading before flattening out (Figure 23). This was the result of
strain aging of the steel. 9 When strain aging is permitted, the sharp yield and yield
elongation properties of mild steel return and increase the entire stress-strain curve. The
arch collapsed at a load of 876 1b/in. with a corresponding deflection of 2. 57 inches at the
3/4-point. No deflection was recorded at the 1/4-point. Figure F-1 ghows the collapsed arch.
There was evidence of buckling at the lower flange of the 1/4-point as a result of compressive
strain, At the 3/4-point the lower flange and the web were ruptured.

The theoretical load-deflection values {calculated in Appendix B) are plotted in Figure 23
for comparison. Data for this test are given in Table A-3, Comparisons of experimental and "
theoretical load-strain curves at the quarter points of the arch are presented in Figures 24
and 25. Excelient correlation with strain gage 4 was obtained. Other theoretical strain
curves were very close to their respective experimental curves in the elastic range but
deviated somewhat in the inelastic range. A comparison of theoretical and experimental
direct forces in the arch is shown in Figuzre 26. The experimental values showed that the
direct forces at the 1/4-point and at the crown were very close to each other but were quite
difierent from the direct force at the 3,'4-point, Theoretically, the direct forces in the arch
did not vary much at these points, as can be seen in Figure 26. Close correlation between
the theoretical and experimental moment at the quarter points and at the crown of the arch is
evident in Figure 27. Similarly, the shearing force at the location of strain rosette
SG-13-14-15 is shown in Figure 28, The theoretical and experimental load-reaction curves
are compared in Figure 29. Close correlations are evident in all four reactions.
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Figure 23. Comparison of theoretical and experimental static load-deflection curves
for the antisvmmetrically loaded arches.

Arches AH-2, AH-3, and AH-4 were preloaded statically to approximately 60 percent of
the yieid load prior to dynamic testing. The data foom these tests are not included in this
report; however, portions of the data are plotied ir: Figures 23 and 29 along with the data from
arch AH-1. The permanentl strains experienced in these static preload tests were negligible.

Free-Vibration Tests

Efforts were made to obtain experimental values of natural frequencies of the deflection
mode and compression mode. However, only the lowest frequency of the antisymmetrical
mode was obtained. These resuits are presented in Table 4. The average natural frequency
from the experimental data was 54 cps, which agrees well with the theoretical natural
irequency of the first antisymmetrical mode, 60 cps. as sbown in Table D-5 of Appendix D.
The theorstical value was obtained from a 40-bar distributed mass system.

26



1,000

$G-9,
second
loading

| |
£G-9 plotted to upper scole
L~ /Ep SG-9

$G-12

—
»/'\\
5G-12, second loading
V4

SG-12
plotted to
lower scale

Load (Ib/in.)

,

— e xperimental
= == theoretical

2 4 é 8 10 14
-2 -4 -6 -8 -10 =12 -14
Strain (1,000 pin./in,)
Figure 24. Comparison of theoretical and experimental strains at the 1/4-point
of the antisymmetrically loaded arch.
Table 4. Summary of Free-Vibration Test of Antisymmetrically Loaded Arches
Natural Natural Damping .
s Logarithmic Coulomb
::Ix;ch Period, Avg Freq‘::ency Ra;io Decrement Damping
. n 4
(msec) (cps) c, é A
AH-1 18.5 54.1 0. 0930 0.587 -0, 00507
AH-2 18.0 55.6 0. 0975 0.616 0. 000597
3 AH-3 18.1 52.4 --- --- ---
Average 16.5 54.0 0. 0853 0.602 0. 00283
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When viscous damping is present in an oscillating structural member, the degree of
damping or the rate of decay is measured by means of the logarithmic decremerdt, &, which is
expressed as follows:

where x,, is the initial amplitude and x;, is the amplitude at the nth cycle from the initial point.
When dry friction or Coulomb damping is also present with the viscous damping, the use of the
above equation will lead to erroneous {Ssults. A semigraphical trial-and-error method has
been presented by Jacobson and Ayre;'Y however, the procedure requires skilled judgment
and can lead to inconsistent results. A method presented by DaDeppoll applies least-square
iteration to determine the damping constants for a dry-friction, viscous-damped system. The
method is not well suited to manual computation. A program is presented in Appendix B for
calculating the damping constants by means of a digital computer. The experimental decay
records of the arches were analyzed by this computer program. The value of the logarithmic
decrement, §, the damping ratio, ce/cs, and the Coulomb darping, A, are presented in

Table 4. The damping ratio is defined as the ratio of the coefficient of viscous damping, cg, to
the critical damping coefficient, c,. The average value of the damping ratio for the first anti-
symmetrical mode was 0.095. In the theoretical analysis, the damping factor was expressed in
the compression mode, and a corresponding value of 0.018 was used as discussed in Appendix
C. A typical free-vibration record is shown in Figure 9.
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Figure 25. Compariscn of theoretical and experimental strains at the 3/4-point
of the antisymmetrically loaded arch.
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Figure 28. Comparison of theoretical and experimental shearing forces in the
antisymmetrically loaded arch at strain rosette SG-13, 14, 15.

Dynamic Tests

After a maximum static load of 243 1b/in. was applied and unloaded, arch AH-2 was
subjected to six dynamic loads of increasing magnitudes, with peak loads between 116 1b/in.
and 780 1b/in. The postshot view of the arch is shown in Figure F-4. Maximum values of
strains, reactions, deflection, and acceleration at the 3/4 -point were obtained from data
recorded on the oscillograph paper as shown in Figure 10.

Similarly, arches AH-3 and AH-4 were tested dynamically to peak loads of 780 1b/in.
and 664 Ib/in., respectively. Reduced data of all the dynamic tests are presented in
Tables A-4 and A-5.

In comparing the strain values, it was found that the straing at the lower extremity of the
3/4 -point were higher than the same location of the 1/4 -point for each aynamic load. Ata
peak load of 780 lb/in., strain gages SG-4 and 5G-12 indicated strains of 7,090 uin./in. and
6,940 uin./in,, respectively; a similar relationship was observed in the static test data.

It should be noted that certain dynamic tests did not yield valid data and are therefore not
recorded in Tables A-4 and A-5. The strain data of Table A-4 were taken at each peak value,
which presented a problem in correlation of theoretical and experimental response because all
the peak strains did not occur at the same time. Only a portion of the data in the elastic range
of arch AH-2 was analyzed, and the resulting moments, direct forces, principal and shearing
stresses are summarized in Table A-8 and Figures A-3 and A-4, The strain data of arches
AH-2, AH-3, and AH-4 are plotted in Figures A-5, A-8, and A-7, respectively.

The load-deflection curves for both theoretical and experimental results are given in
Figure 30. The experimental load-deflection curve represents the mean values of the data
taken from the maximum values of each test of arches AH-2, AH-3, and AH-4. The theoretical
curve is plotted from the data of Appendix C. Good correlation between the theoretical and
experimental curves is evident in Figure 30.
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Figure 30. Comparison of dynamic load-deflection curves for
the antisymmetrically loaded arch.

Figure 31 shows ths comparison of the theoretical and experimental moments of the
crown and quarter points of arch AH-2, Only experimental moments in the elastic range are
presented for comparison. Moments at the quarter points show good agreement, but the
moments at the crown do not agree very well. It is believed that the disagreement of moments
at the crown of the arch is due primarily to the inaccuracy of the small strain readings of
8G-5 through SG-8. The experimental values of direct forces did not agree with the theoretical
values because the peak values of the strains did not occur simultarecusly. In the calculation
of experimental direct forces, the algebraic sum of different strains at the ugper and lower
extremities was taken. Simall inaccuracies will result in large differences in the direct
force.

The axial forces obtained frcm the simplified analysis (Appendix E) were very close to
those obtained from the more rigorous analysis of Appendix C. However, the values of
bending moment were notably higher in the same compariscn, since the damping was not
considered in the simplified analysis. The axial forces have time variations which correspond
to the second symmetrical mode and the moment has a time variation which corresponds to the
first antisymmetrical mode. Obviously, the damping effect on the moment was much higher
than on the axial force.
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Figure 3i. Comparison of theoretical and experimental dynamic moments.

GENERAL DISCUSSION
Design, Behavior, and Analysis of the Arches

The depth and width of the arches were limited to 4 inches and 7-3/4 inches,
respectively, because of the physical dimensions and safe-load capacity of the blast simulator.
To provide symmetry of the cross section with resgpect to the neutral axis would have required
the use of a thin-gaged steel member. As a compromise, a top-heavy section was selected
for the arches, consisting of a 4M13 cold-rolled section with steel strips, 5/8 inch by
1-7/8 inches, welded to each side of the top flange. In the cold-roll process, the 4M13
section was strained beyond yield. The flange strips were cold-rolled separately and then
welded to the 4M13 section; as a result the flange strips were inelastically strained less than
the 4M13 section. The strain-hardening properties of the flange strips and the 4M13 section
were determined by static and dynamic tensile coupon tests.

Because of the strain hardening encountered in the cold-roll process, the static and
dynamic stress-strain curves of the material did not exhibit a defirite yield point. It was
also observed that the total elongation of the tensile specimens was less for strain-hardened
steel than for similar material that was not strain hardened. It is believed that the arches
would have deflected more at ultimate load if these strain-hardening effects had not been
present. Furthermore, the ultimate Joad of the arch was limited by the ultimate strength of
the lower flange. As the lower flange was stressed into the inelastic range, the neutral axis
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moved closer to the upper flange which caused the strain in the lower flange to increase more
rapidly. As the arch approached the ultimate load, a considerable portion of the arch
remained in a low-stress state at the critical section; thus, failure occurred before the full
ductile potential of the arch was developed.

In the analysis, it was necessary to consider the nonhomogeneous section created by the
4M 13 section and the flange strips. It was desirable to express the stifiness properties of the
cross gectinrn 18 the products EI and EA. Separation of the modulus, E, from these product
terms wouia have complicated the analysis.

Due to the lack of a definite yleld plateau in the steel used in the arches (particularly the
flanges), a trilinear stress-strain curve was used for the static analysis. Ordinarily this
would not be necessary since the cold-roll process is not generally used in the fabrication of
large arches. The analytic method presented in Appendix B is valid for materials with
bilinear or trilinear stress-strain curves or even for a material that does not have an elastic
range,

In the elastic range, the static analysis initially involved solving a statically determinate
arch without the redundant reactions (the two-hinged arch has one redundant reaction and a
fixed-end arch has three). The redundant reaction can then be obtained by satisfying the
boundary conditions at the supports. In this analysis, elastic supports as well as rigid
supports can be handled.

In the inelastic range, the incremental stress method was used along with an iteration
process to determine various locations of yielding until the uitimate strength was reached at
some location in the arch. The analysis was carried only as far as the development of the
ultimate strength.

Analysis of the two-hinged arch of uniform cross section indicated that moments at the
crown were small for a uniform load distributed over one-half the arch, This suggested that
the placement of a third hinge at the crown would not substantially alter the behavior of the
arch. Thus, a three-hinged arch would support the loads as well as the two-hinged arch. The
analysis of a three-hinged arch is much simpler than that of a two-hinged arch. In addition,
such a statically determinate arch would not be subjected to the effects of thermal stress,
differential settling of the support, and initial misalignment. Furthermore, the variation in
cross section could be handled with less difficulty.

Dynamic analysis of the arch employed a discrete framework in both the elastic and
inelastic ranges. The mass of the arch was concentrated at the flexible joints, which were
connected by rigid bars. An iteration process was used to obtain the forces and displacements
at each joint by satisfying the respective equations of motioré. The numerical integration
method by Newmark was an essential tool ir this analysts. 1

An additional assumption was made for the dynamic analysis in the inelastic range. The
cross section of the arch was represented only by the two flanges. This assumption was
desirable due to the complexity of the bilinear stress-strain relationship (Figure C-5) in the
loading and unloading process. Accuracy of the dynamic analysis by the iteration process
depends largely on the simplicity of the idealized stress-strain curve and the number of the
joints in the discrete framework. Convergence of iteration is slow if these factors are
complicated.

In the determination of natural frequencies and mode shapes (Appendix D), it was found
that the distributed-mass system provided better results than the concentrated-mass system
for the same number of joints. However, it is believed that the use of a distributed-mass
system for the dynamic response theory would undesirably complicate the analysis and
increase calculation time, Ta

In the actual arch tests, there were numersus contributions to total damping of the
system: viscous damping (internal and external), Coulomb damping, and damping at the
supports. To separate the effect of each type of damping would require extensive study of the
properties of the material; this study was not justified from an engineering standpoint. The
damping factor used in the theoretical /-evelopment was obtained experimentally from the
free-vibration tests in the deflection mode and represented the combined effect from all
sources. It is believed that the supports provided a major contribution to the total damping;
the number and quality of the support connections greatly influenced the damping charac-
teristics of the arch. Also, it is believed that a three-hinged arch would have higher damping
than a two-hinged arch or a hingeless arch, provided other factors remained unchanged.
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The simplified dynamic analysis of Appendix E is a rapid, easy method of obtaining
informatior on a portion of the dynamic response of an antisymmetrically loaded arch. This
method 18 limited to the response of the gquarter point of the loaded side of the arch., The
damping effect was not considered in the analysis and, as a result, the moment values were
larger than their counterparts in Appendix C. The values of axia! forces obtained from the
aimplified analysis compared very well with those of the more rigorous analysis.

The digital computer proved indispensable in both the static and dynamic analyses of the
arch system, particularly when elastic supports were involved.

Effect of Load History

The effect of load history on the dynamic response of structures has been reported for
structural connections and portal frames. 1, 2,3 In the static test of arch AH-1, pressure
leakage necessitated unloading and reloading the arch after certain porticns of the lower flange
had been strain-hardened. The load-deflection curve for the reloading was higher, before it
became flat, than the initial loading curve, This effect is known as strain aging.5 When the
metal is strained and then aged, the sharp yleld and the yield elongation may return and
increase the resistance of the material. This phenomenon is accompanied by a decrease in the
ductility of the steel.4,5 Multiple loading of the arch will reduce the flexibility of the arch in
the inelastic range, particularly near the ultimate load. The cold-rol! fabrication process of
the arch can be considered a form of loading; its effects have been discussed in the previous
section.

Application of Results

Correlation of the theoretical and experimental data provides a basis for design of arch
structures to resist blast loading, The information contained in this report can be used to
refine the design and fabrication of arch structures.

This study applies only to the loading, support conditions, and configuration of the arch.
Generalization of the results to produce a simplified method for the solution of arch problems
should be performed with caution. In relating the results of this investigation to design
practice, particular care must be taken to examine the load and mass distributions, stiffness
characteristics, and support condition of the structure. The methods and computer program
for the theoretical solution of arch behavior provided in this report can be used to study arches
of other configurations and loading, provided proper input parameters are employed.

Accuracy of Measurements

The instrumentation used in this experiment was carefully selected and calibrated before
testing. The obtained measurements are believed to be accurate within the manufacturer-
recommended tolerance of each measuring device. Data reduction, although subject to human
error, was carefully performed and checked to eliminate all significant errors. ‘The reduced
experimental data are assumed to have the following accuracy:

Data Accuracy (%)
Static:
Pressure 2to 3
Reaction 2to 3
Deflection 2t 3
Strain 4ty 8§
Dynamic:
Pressure 4to 5
Reaction 4to 5
Deflection 4t 5
Strain 8 to 10
Strain rate 10 to 12
Acceleration 12to 15
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Conversion of the experimental data for comparison with the theoretical solutions was
performed by a computer. The results are believed to be as accurate as the agsumptions
permit,

FINDINGS AND CONCLUSIONS

The experimental tests and the theoretical solutions included in this report are limited to
a specific two-hinged arch with certain loading conditions; however, some of the findings and
conclusions are applicable to arches with other loading and support conditions and
configurations,

General

1. Tensile coupon tests indicated that the steel used in the arches was strain hardened; the
material lacked a definite yield plateau common to structural steel and consequently was better
represented by a trilinear stress-strain curve than by the usual bilinear curve.

2. The ductility of the arch material was reduced primarily by the strain resulting from the
cold-roll process; the arch failed before the ductile potential was developed.

3. When the material was strain hardened and then aged, as when the arch was unloaded and
loaded in the inelastic range, the stress rose above the original stress-strain curve and the
ductility of the material was considerably reduced.

4. The failure modes for both the statically and dynamically loaded arches were similar, The
governing factor was the ultimate stress at the lower flanges of the quarter pcints.

Static Tests

1. Good correlation was obtained between experimental behavior and the theoretical analysis
in the elastic and inelastic ranges.

2. The deftected shape of the arch was basically antisymmetrical, with a rotation of the chord
connecting the two hinges introduced by the yielding supports.

3. Bending moment was the predominant factor in the stress and strain distribution in the
arch; the direct axial forces exerted only a minor effect in developing the stress and strain in
the arch,

4, The yielding support on the loaded end reduced the axial forces in the arch, increased the
bending moment and deflection on the loaded half of the arch, and decreased the moment and
deflection on the unloaded half of the arch.

5. The maximum bending moment and deflection occurred very near the quarter points of the
arch, where the shearing forces were zero.

6. The maximum stresses occurred in the lower flanges of the quarter points,

7. The crown of the arch, which was very close to the point of contraflexure, maintained a
very low bending moment throughout the loading history.

8. (Collapse occurred when the ultimate stress at the lower flanges of the quarter points was
reached.

Dynamic Tests
1. The theoretical analyses satisfactorily predicted the experimental dynamic behavior of the

arches in the elastic and inelastic ranges. The simplified analysis proved to be sufficiently
accurate for design purposes,
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2. The time-dependent displacemerts occurred at a frequency corresponding to the first
antisymmetrical mode of the free vibration of the arch. This indicated that the first
antisymmet. ical mode was predominant in the response.

3. The axial force remained essentially uniform along the length of the arch and varied with
time according to the frequency of the second eymmetrical :node of the arch (breathing mode).

4. The bending moments varied with time at the frequency of the first antisymmetrical mode
of the arch. Although some contributicn of the third artisymmetrical mode was observed, the
first antisymmetrical mode definitely made the main contribution to the moment.

5. Maximum stresses occurred at the lower flanges of the quarter points primarily due to
bending action.

6. Bending moment at the crown of the arch was very small for all dynamic tests.,

7. Damping of the system had an important effect on the bending response of the arch; its
effect on the axial force was small,

DESIGN RECOMMENDATIONS

The methods used in the design of arch structures depend on such factors as the material
used, geometry of the arch, conditions of loading and support, and the distributicn of mass
and stiffness along the arch. The two-hinged arch discussed in this report is only one specific
case. However, certain gesign recommendations can be drawn from the theoretical analyses
and experimental data which apply to two-hinged circular arches subjected to ovcipressure
from a traveling blast wave,

Static Design and Analysis

The ultimate strength of the antisymmetrically loaded two-hinged arch is essentially
limited by the moment-resisting capacities at the quarter points of the arch. This sugzests
that special reinforcement of the arch sections in the form of cover plates, or increased depth
at the critical sections will considerably increase the ultimate strength at a small increase in
fabrication cost.

The bending moment at the crown remained low throughout the entire loading history.
This suggeste tuat a three-hinged arch (hinges at the supports and the crown) of the same
cross section will respond very much like the two-hinged arch. Thus it would be logical to
consider a three-hinged arch as the first alternate design of the two-hinged arch. Asa
statically determinate stiucture, the three-hinged arch is less affected by thermal stress,
differential settling of supports, and initial misalignment. The stress level is more readily
controlled for certain loading conditions.

The arch response is very sensitive to the support conditions. It is essential that proper
eva.uation of the structural foundation be made before designing the arch. For arches resting
on elastic supports, the axial forces in the arch will decrease and the bending moments will
increase with increasing flexibility of the supports. In case of uncertainty, the design should
be adequate for the twc worst conditions.

The unbalanced arch cross section has a tendency to limit the moment-resisting capacity
of the arch according to the yield strength of one flange. As the inelastic strain develops, the
neuirai axis moves away from the flange having higher stress and thus accelerates the
strai~iug process. For isotropic materials (most netals can be considered isotropic for
design purposes), a balanced cross section is essential for the most economical design.

Strain hardening of the steel reduces its ductility; as a result, collapse of a
strain-hardened arch occurs at the ultimate load with little warning. The use of strain-
hardened material is not recommended for arch construct.on, In particular, a cold-roll
process should not be used to fabricate arches other than model arches and sheet metal
arches.
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The use of a digital computer can be of great value in the arch analysis particularly when
elastic supports are involved. The programs presented in Appendix B may be readily modified
for arches of different geometries and support conditions.

Quasi-pseudo static response may be obtained from the dynamic solution by introducing a
high level of damping. A damping factor of 0.3 proved to be satisfactory for the arch under
consideration,

Dynamic Desgign and Analysis

For long-duration loads (in which the ratio of the load duration to the natural period of
the arch is greater than ten), dynamic bending moments at the quarter points are equal in
magnitude. However, the combination of moment and direct force will cause the lower flange
of the quarter point on the loaded portion of the arch to yield first.

Maximum stresses are contributed primarily by bending. Special reinforcement by
varying the effective depth of the arch sections at the quarter points is desirable. For
dynamically loaded structures, the increased depth is more efficient reinforcement than cover
plates because less mass is involved.

Rapidly strained steel exhibits a considerabie increase in dynamic yield point; references
2 and 3 report results for initially unstrained specimens of A-7 mild steel. No research has
been found which reports the increase in dynamic strength of steel after it had been previously
strained into the strain-hardening region. Indications from this investigation are that the
percentage increase in dynamic strength preperties diminishes after previous inelastic
straining has occurred. Specimens from some of these arches exhibit strength increases of
about 10 percent for strain rates of 0.5 in./in./sec.

The level of damping is very important for the calculation of dynamic response of the
arch. A damping factor of 0.1 will probably be appropriate for most steel arches.

Due to the absence of the damping terms, the use of the simplified analysis in Appendix
E is limited to systems of light damping. This is demonstrated in the comparisons of axial
force and moment obtained from the simplified and more rigorous dynamic solutions.

Stmilar to the static response, the bending moment at the crown for dynamic load
remains low. Consideration of a three-hinged arch is also valid for dynamically loaded
arches. In addition, the damping value will be higher for a three-hinged arch of similar
cross-gection properties.

The efficient use of a digital computer is essential in obtaining accurate dynamic
response of the arch. The dynamic solution by the method of numerical integration is
impractical, if not impossible, by manual calculation.
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LIST OF SYMBOLS '
General Note:
Superscripts: Refer to:
L r left and right sides of a joint
x first derivative of x with respect to time

X second derivative of x with respect to time
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Subscripts:
h i, i,k ¢, m
X ¥y
r, t
u, £

t, b

designations for location of joints
designations for x, y direction
radial and tangential components
upper and lower flanges

top and bottom flanges of the two-flange representation of the
cross section

r

o}

tn

2
EA

El

symmetrical matrix for natural mode and buckling load equation
static stress amplification factor at joint §
static amplification factor for the simplified analysis

area of top and bottom flanges of the two-flange representation of the
cross section (in, )

symmetrical matrix for natural mode and buckling load equation
symmetrical matrix for natural mod¢ and buckling load equation
instantaneous set

constant

symmetrical matrix for natural mode and buckling load equation
initial misalignment of arch supports (in.)

parameter used in the equations for natural modes and buckling loads
critical damping coefficient

external damping coefficient

distances from neutral axis to upper and lower flanges (in.)
dynamic amplification factor for simplified analysis

depth of arch cross section

modulus of elasticity (psi)

inelastic modulus of material (psi)

second modulus of material (psi)

third moduius of material (psi)

extensional stiffness parameter of joint j (lb)

flexural stiffness parameter of joint j (lb-in.z)
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e strain (in. /in.)
F external force (lb)
i stress (psi)
fn natural frequency of vibration (cps)
. fy yield stress (psi)
H horizontal redundant reaction (lb)
k parameter used in the equations for natural modes and buckling loads
k spring constant of elastic support (in./lb)
L length of bars for the discrete framework (in. ) "
Lo span of the arch (in.)
M j bending moment at joint j (in. -1b)
Mp plastic moment (in. ~1b)
m, mass of joint j (Ib-sec?/in. 2)
Nj axial force due to the deformation of bar j (Ib)
n number of bars for the discrete framework (in.)
n a constant used in the simplified analysis
pjx’ pj v x, y components of external forces acting at joint j (1b)
ij, l’jy X, y components of internal forces at joint j (Ib)
Pjr’ Pjt radial and tangential forces at joint j (lb)
p pressure (psi)
A radius of the arch (in.)
Rl reaction 1, etc, (Ib)
T, natural period (msec/cycle) :
T(x) natural periods used in the simplified analysis (msec/cycle)
t time (sec) i,
t, duration of dynamic load (sec)
] L total external work (in, -1b) z
Wi total internal work (in. -1b) '
er, W’t external resultant forces at joint j in radial and tangential directions (1b) '

w uniform load (1b/in, )
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buckling load used in the simplified analysis (1b/in.)

plastic section modulus (in. 3)

internal resultant forces at joint j in radial and tangential directions (lb)
angle between radii of support and a point on the arch (rad)

angle between radial of a support and x axis (rad)

coefficient of numerical integration

maximum shearing siress in the web

logarithmic decrement

deformation of bar j (in.)

first-order approximation of 4, (in.)

i
deflection (in.)

X, y components of displacement at joint j {(in.)

radial and tangential displacements at joint j (in.)

time increment (sec)

angular change, elastic weight at joint i (rad)

first order approximation of Oj (rad)

inelastic angular change at joint j (rad)

parameter used in the equations for natural modes and buckling loads
mass per unit length of the arch (lb-secz/in. 3)

damping factor

damping factor associated with "breathing' mode of vibration
parameter used in the equations for natural modes and buckling loads
principal stresses 1 and 2

central angle of the arch (rad or deg)

central angle subtended by bar j (rad)

angle of principal axes with respect to strain rosette

angular rotation (rad)

angular rotation of bar j (rad)

first order approximation of wj (rad)

circular frequency of vibration {rad/sec)
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Appendix A
MEASUREMENTS OF PRESSURE, DEFLECTION, AND STRAIN

Table A-1. Static Test Data for Antisymmetrically Loaded Arch AH-1, Test No. 2

Load Dﬁie:- Strain, e {uin./in.) i Reactlon (in)
) (ll\;ln. ) “’;1%) SG-1 N 5G-2 SG-3 SG-4 | 5G-5 | SG-6 | SG-7 |SG-8 |SG-9 Rl R2
0 0 0 0 0 0 Q 0 v} 0 0 0 0
243 0. 27 -440 90 320 650 ~-40 -50 -70 -60 250 | 12,270 4,810
486 0.58 -860 180 620 | 1,370 -70 -110 | -150 |-140 510 | 24,310 9,620
568 0.67 -1,000 220 760 | 1,610 -70 -130 | -180 |-170 630 128,100 | 11.110
609 0. 76 -1,090 290 880 | 1,800 -70 -140 | -200 |-180 860 | 29,440 | 11,940
633 0.81 -1, 140 360 | 1,000 | 2.140 -70 -140 | -200 |-200 700 |} 30,330 | 12,270
649 0.85 -1,190 400 | 1,080 { 2,310 -70 -150 | -210 |-200 720 ] 31,000 | 12,600
665 0.90 -1,230 460 | 1,180 | 2,530 -70 ~-150 |-220 |-210 740 | 31,900 | 12,770
682 0.94 -1,270 500 | 1,280 | 2,710 ~70 -160 | -230 |-220 770 132,560 | 13,100
698 0,98 -1, 320 560 | 1,380 | 2,940 =170 -160 | -240 |]-230 800 ]33,230 | 13,260
714 1.07 -1, 360 640 | 1,510 | 3,230 -60 -170 | -250 |}-240 830 | 34,120 | 13,430
730 1.07 -1, 450 710 | 1,720 | 3,530 ~50 -170 | -260 | -250 850 | 34,790 ;| 13,760
: 746 1.12 -1,510 780 | 1,800 | 3,790 -G0 -180 | -270 |-260 880 {35,460 | 13,930
! 763 1.21 -1, 560 890 | 1,980 | 4,180 -50 -180 | -290 |-270 910 | 36,130 | 14,090
7 1,25 -1,630 950 | 2.060 , 4,350 -50 -190 | -280 |-280 950 | 36,800 | 14, 260
787 1,34 -1,720 | 1,120} 2,380 | 5,000 -50 -190 | -300 -300 1,000 {37,470 | 14, 420
791 1,39 -1,760 | 1,170 | 2,450 | 5,190 -50 -180 | -310 |-300 |1,020 | 37,470 | 14,420
perm 0. 40 -340 830 390 | 2,840 -40 -20 -70 -40 10 340 500
foad Det{é‘enc- Strain, 2 (uin./in.) Reaction (Ib)
(lb/v;n.) (i):f) $G-10 }[SG-11 | 8G-12 | SG-13 | SG-14 | 5G-15 | 8G-i6 | 5G-17| SG-18 R3 R4
0 0 0 0 0 0 [} 0 0 o] 0 0 0
243 0.27 -180 -370 -670 | 160 -80 -220 -260 -90 200 4,490 | 10,730
486 n, 58 -370 -740 (-1,350 | 340 -150 -440 -540 -180 390 9, 430 | 21,020
568 0.67 -440 -860 | -1,570 | 380 -150 ~520 -640 -200 490 11,180 | 24,970
609 0,76 -480 -946 | -1,710 | 430 -180 -560 -670 -220 500 11,620 | 25, 840
833 0,81 -500 |-1,000 | -1,800 | 450 -180 | -580 -7006 | -220 530 12,170 26,940
649 0.85 -540 |-1,040 | -1.880 | 470 -180 -€10 -710 -220 560 12,490 | 27,810
655 0.90 -550 {-1,090 | -1,960 48 -180 -630 -720 -230 580 12,820 | 28,250 .
682 0.94 -580 1-1,140 | -2,060 | 510 -180 -650 -720 -230 600 13,260 | 29,130 ’
698 0.98 -640 1-1,200 | -2,160 | 539 -180 -670 -730 -24C 600 13,590 | 29, 780
713 1.07 -660 1-1,250 1-2,250; S60C =120 -£20 =780 =240 s1e 14,140 ; 30,440
730 1,07 -700 |-1,350 | -2, 410 580 -190 -720 -800 ~240 630 14,580 | 31,100
746 1.12 -830 |-1,440-2,550] €00 ~190 -750 -830 -250 660 14,800 | 31, 540
. 163 1.21 -860 |-1,540 | -2,720 | 620 -190 =770 -830 -250 680 15,670 | 32,630
171 1.25 -920 |-1,620 | -2,880 | 630 -190 -790 -850 -260 690 -—- -
87 1.34 -1,010 |-1,830|-3,210] 670 -160 -820 -870 -260 710 - -
91 1.39 | -1,060 |-1,900 | -3,32¢c| 680 | -160 | -830 | -850 | -250 [ 720 | --- -
perm 0. 40 ~360 -G50 | -1, 060 120 -100 -S0 -30 l -20 l 40 -- -
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Table A-2, Summary of Static Data for Arch AH-1, Test No, 2

Load 5G-5 SG-8 Moment ?L‘; "c‘f
(lb/in. ) (uin. /in.) {uin, /in,) {in. -kips) (kips)
243 -40 -60 -2.75 7.76
486 -70 -140 -1.60 16. 00
568 =70 -170 -10, 20 18.90
609 -T70 -180 -11.5¢C 19. 30
633 -70 -200 -12.60 19.90

5G-1 SG-4

243 -440 680 114, 00 13.00
486 -860 1,370 221, 00 24.170
568 -1, 000 1,610 285. 00 27.90

SG-9 SG-12

243 250 -670 -93.20 8.18
486 510 -1,350 -190. 00 15.90
568 6306 -1,570 ~-224. 00 14.50
609 660 -1,700 -241.00 18.40

Load Principal Stress Phi M’é’: Shear Rad Shear

{Ib/in.) 9 (ksi) oy (ksi) (rad) (ksl) (kips)
243 2.91 -5.20 -0, 117 4.05 -3.79
486 6.30 -10.31 -0.126 8.31 -7.80
568 7.20 -12.19 -0, 120 .10 -9.10
809 7.94 -12.90 -0.118 10.40 -9.83
633 8.30 -13.60 =0. 195 11.00 -10,40
649 8,71 -13.84 -0,104 11.30 -10.80
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Table A-5. Summary of Dynamic Test Data of Antisymmetrically Loaded Arches

Maximum Reaction~ {Ib)

%;-:.h Egs" Peakwl.oad geﬁ;m;: Horizontal | Vertical | Horizontal| Vertical ACCEl(e ration
“ ] av/in) | (in.) 1 2 3 4 g)
AH-2 1 116 0.22 14,700 5,010 6,450 11, 050 108
8 235 0.38 23,460 10,470 9,680 19,890 677
9 322 0.48 33,220 12, 270 10, €90 20,420 254
10 338 0.51 17,42¢C 10,320 13, 100 20,240 224
11 411 0.73 34, 030 16,190 15,830 29, 840 255
12 780 1.44 78,410 11,970 19,110 43, 220 225
13 618 1.09 83, 820 16,750 --- 41,160 269
AH-3 14 -=- ~-- .- - .- -—-- ---
15 -~- --- --- --- --- --- ---
16 --- .- ~-- - --- - ---
17 474 0.99 54,630 16,180 15,810 40, 090 214
18 636 1.22 57, 880 12,890 26,360 41, 960 263
19 - --- --- -—- .- -—- ---
20 700 2.83 54,110 18,580 26,610 46,780 248
21 780 2.10 51,590 31,850 19, 960 48,110 ---
22 101 ~—- 8,730 5, 500 6,250 6, 180 -—--
23 728 2.28 68,600 18,229 23,950 49,460 ---
AH-4 24 206 0.38 21,380 9,980 11,530 18, 980 174
25 613 1.18 57, 390 19,960 26,610 43, 660 266
26 664 1.34 55,700 20, 350 24,180 48,950 357
47
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Table A-68, Summary of Maximum Dynamic Data for Arch AH-2

Load SG-1 SG-4 Moment Direct
{1b/in, ) (uin, /in, ) (uin, /in,) (in, -kips) (kips)
116 -460 810 129. 0 8.29
235 -800 1,430 2217.0 14.10
411 -1,480 2,510 408.0 34.50
8G-5 SG-8
116 -170 -380 -20.8 42.60
235 -270 ~-460 -18.5 59. 00
411 -470 -800 -33.8 103. 00
SG-9 8G-12
116 370 =760 -116.0 -0.55
235 590 -1, 260 -189.0 -1.71
411 1, 140 -2,200 -340.0 -10. 20
Load Principal Stress Phi Mas.)érihsesar Rad Shear
(1b/in.) 2] (ksi) oy {ksi) (rad) (ksi) (kips)
116 4,63 -10.20 -0. 238 7.44 -8.15
235 8.64 -17.20 -0.243 12,90 -10, 90
411 17,20 -26.00 -0, 255 21.60 ~19.40

48




Load (Ib/in.)

0 5es $G-9
'secdcznd /plcf?ed to
oa nn>, upper scale
\\ $G-12
35G-12, second looding plotted to
lower scale
600 3
3
<]
L
£
400
200 ‘/
0
2 4 6 8 10 12 14
-2 -4 -6 -8 -10 -12 -14
Strain (1,000 gin./in.)
Figure A-1. Accumulative strains, SG-9 and SG-12. of

antisymmetrically loaded arch AH-1.
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1,000 |
$G-1 L-5$G~1
second loading. 1 plotted to
lower scale
.
P SG-4 MsG-4
S;;G,.;l socord loading plotted to
. upper scale
1oading
~ 600
£
?; ~—$G-4
b first
_3. loading
400
200
0 ]
0 2 4 é 8 10 12 14
0 -2 -4 -6 -8 -10 -12 -14

Strain (1,000 pin./in.)

Figure A-Z. Accumulative static strains, SG-1 and SG-4, of
antisymmetrically loaded arch AH-1.
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Tigure A-3. Maximum values of experimental moment and direct force for
dynamically lcaded arch AH-2.
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Appendix B
STATIC ANALYSIS OF TWO-HINGED CIRCULAR ARCH

General

The static analysis of the two-hinged circular arch with a uniform load, w, distributed
over one-half the span (Figure B-1), includes theoretical solutions in both the elastic and
inelastic ranges. To simplify the numerical solution, an idealized arch (Figure B-2) is
taken along the centerline of the actual arch. The elastic characteristics are represented
by the flexible joints connected by rigid bars, 13 This substitute framework is showm in
Figure B-3.
Elastic Range

In deternrining the theoretical behavior of the circular arch in the elastic range, the
following assumptions were made:

a. A linear distribution of stress and strain is maintained at any cross section of
the entire arch.

b. The arch cross sections are uniform between any two adjacent joints.
c. Segments of the arch are assumed to be straight.

d. Continuity of the arch is maintained in the elastic range.

3.505°

Figure B-1. Geciuetry and loading condition of the circular arch.
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wy {Ib/in.)
Y N  IEEEEREERRN] LLLﬂj.]j_ Ry
£ K
3
\\\
A(x,y)
~ .
no
-]
Ry /s "
Ry

Figure B-2. Coordinate system and loading condition for static analysis of the circular arch.

e. The applied ioads are assumed uniform between any two adjacent joints and can be
represented by components of concentrated loads.

f. Rotations due to elastic strain take piace at the joint.
g. The elastic support is represented by a linear spring.
h. The effect of dead load is negligible.

Assumption g is due to the horizontal movement of the right support during the static

tests. The horizontal permanent displacements recorded were 1.16 inch. It is believed

that the elastic displacement during the test was larger. The elastic constant was taken to

be 6.25 x 10-6 in. 1b in the static analysis. .
The two-hinged arch considered is a statically indeterminate structure with a

redundant reaction. If the horizontal restraint at n is removed, the structure becomes

readily solvable by the principles of statics. The deformed structure is shown in Figure B-4,

The simulated structure, obtained by the addition of the redundant reaction, H, is shown in

Figure B-5. By applying the principle of superposition, the magnitude of H is obtained for

- the nonyielding support by equating the horizontal deflection at n (4x" in Figure B-5) to "

the deflection 4%' in Figure B-4, For structures with yielding supports, special boundary

conditions must be satisfied.
The slope-deflection relationship of a segment of the arch may be expressed by the

moment-area method. }
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- Figure B-3. Discrete framework of the arch.

w (Ib/in.)
IEEEEEEEREERREEER;

~ [

w (Ib/in.}

deflected arch

Figure B-4. Deflection of the statically determinate base structure.
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Figure B-5. Original arch simulated by addition of redundant reaction H.

For the entire arch, the origin of the coordinate system is taken at the left support
of the arch as shown in Figure B-2. Note that the x and y axes coincide with the direction
of reactions, R3 and R4, respectively. By trigonometry, the coordina.es of any joint j on
the arch may be established as {follows:

xj = R [cos B (1 - cos a) - sin 8 sin a] (B-1)

y; = R [sinﬂ + sin (& - B)] (B-2)

where 8 is the initial angle between the radial line of the arch at point 0 and the horizontal
axis. Because of symmetry at the crown of the arch

p- 46, 3)

where ¢, is the central angle of the arch.
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Consider a discrete system with a finite number of joints connected by straight bars.
Let the angle between radii to two adjacent joints be ¢ and the central angle of the arch be
¢g: then

¢

2
n

¢ =
where n is the number of bars used ir. the discrete system., The bar length is
¢
L = 2Rsin+ (B-4)

2

The x and y components of the bar connecting joints j and i are

Xx =% X (B-5)
. = Y. e Y. B-6
Yiy 7% 7Y (B-6)

where joint i is the joint j-1.

Proceecing on the assumption that the applied loads are uniformly distributed along each
segment of the arch, it is convenient to resolve the distributed loads into x and y components
of a concentrated load acting at the centroid of the segment. If the segment is sufficiently
small to warrant the assumption of the member being straight for the segment, the uniform
load, w, may be resolved into components as follows:

o= . B-7
P]x Wyjy ( )
and
= . B-8
Piy = ¥¥ix (B-8)
The conditions of equilibrium require that
n
P + P + b w =0 B-9
nx ox L Yiy T (B-9)
l=0
n
Pyt Py Z wx, = 0 (B-10)
1=0
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and

n

¥io\ x
n =Mt Pox¥n * Poy¥n* 2. [pjx<yn Y +'JH ‘ pjv(xn "% +-¥-">]

M ?
j=o

n y xx
Mo + l”ux Yo * Poy x o+ Z w[yjy<yn - yj +_£¥> + xjx<xn - xj +_£-)] (B-11)
1=0

2
/]

where the subscripts o and n denote beginning and ending points of the free body considered
for equilibrium. It {3 important to note that point j can be an ending point as well. A review
of the statically determinate structure of Figure B-4 indicates that the x component of
reaction n is zero.

P_=0

nx

n
P - E wy, = 0 (B-12)

i=o

or
n

Px = - ]_Zo iy (B-13)

n
1

P = -P -), wx (B-15)

Substituting Equations B-13 and B-15 into Equation B-11, the bending moment at any joint
can be calculated.
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Consider an arbitrary moment distribution in the vicinity of joint j as siown in
Figure B-6, and subdivide the moment diagram into a number of triangular pn:iicas. The
segment size is chosen so that the variation of moment can be adequately approximuted by
straight lines between adjacent joints. The bending moments tributary to joint : ¢an be
represented by the triangle abc and the area of the triangle is

0 = —d (B-16)

where 8; denotes angular change at j due to elastic strain between dg. The areas abc and
defg are'equivalent, and M;/EI can be taken as the average elastic weight between d and g.

For small angular changes, the relative displacement of joint i with respect to any
point A, shown in Figure B-7, may be expressed in component terms as follows: 14

y i7i Elj j
M. L
4 = GY; = 'EJT;YJ'
N
\
\
\
\ e b f
\\ S —
M \ ‘
\ \
\ E
\\
\\ /] ./ \
\ |/ /
\ //
\
/
.L °Y1 g T £ < - S
2 i j j#! 2

Figure B-6. Moment at the vicinity of joint j.
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Figure B-7. Joint rotation due to elasti. strains.

Summing from 0 to n and adding the initial displacoment terms, the x- and
y-components of final displacement become

n. M, L
- 2: (B_1
Any Aoy + ooxn - ; + x] {(B-17)
=9
. M. L
= - —‘1— -
8px = 8ox * %Vt )l EIJ. ¥ (B-18)
i=o

It should be noted that M; may be obtained from Ezuation B-11 by subatituting j for n.
To maintain continlity, the sum of total angular changes between 0 and n must be
equal to zero and Equations B-17 and B-18 must be satisfied, This results in

ML
0 *‘MZ*J';” (B-19)
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For the structure shown in Figure B-4, 4py = Aoy = 0, It follows from Equation B-17
that

6, = -;(1-; z -Ell—xj (B-20)
j=o i

T o ML L. ML
- . o .
B = 2D El"j*z ELYj
n j=o 1 j=o |
By symmetry
y
R
X
n
The above equation is then reduced to
. ML
= _1_( - )- -
4 jzo BT () - %) - a; (B-21)

This equation gives the horizontal displacement of the statically determinate arch shown
in Figure B-4,
In order for this arch to act as a two-hinged arch, the horizontal restraining force, H
must be provided as shown in Figure B-5. For simplicity of presentation, let H be unity.
The equilibrium in the x direction requires that

Px = P =1 (B-22)

Taking moments about point 0 and noting the geometric symmetry and equilibrium condition
in the y direction, it is clear that

P = =P =1 (B-23)

M. =y - x (B-24)
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Substituting Equation B-24 into Equation B-21 for horizontal displacement in the direction of
the unit load at n, and introducing the redundant reaction, H

I
voo ol Lo o x\ -
4" = -H Z Tt (yj xj) (B-25)
j=o 1}
In the case of a nonyielding support

4’ + 4. =0 (B-26)

By substituting Equations B-21 and B=25 into Equation B-26, one obtains the following
expression for the redundant, H

n M.
H = Z (,T_-]T) (B-217)
j:o ] j

For elastic support represented by a linear spring with constant k in the direction of H

Ax' + Ax" = kH (B-28)
therefore
n M L -
Z +r T ("i N "1)
H = 1°°n (B-29)
L 2
e 120 T (5 - %)

Note that Equation B-27 is a special case of Equation B-29 with k = 0,
Once the redundant, H, is known, the two-hinged arch can be solved as a statically
determinate structure as outlined above.
The bending moment and the x- and y-components of forces at each joint can be
calculated by Equations B-9, B-10, and B-11. It is desirable to convert the x- and '
y-componernts of the forces at each joint into radial and tangential forces as follows:

= cos (- B) + P, sin(a - B) B-30)
le‘ ?jx cos { ﬁ/ D]y in ( -] (B-30)
= P, -B) - P._ sin (o - B-31
Pjt P)y cos (a ) ix sin (a - 8) (B-31)
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where Pjp and Pjt are the radial and tangential forces at the joint §, generally known as
radial shear and direct forces in the arch.

The stress and strain of upper and lower fibers at each section can be calculated from
the bending moment and direct forces of Equations B-11 and B-13, The expressions for
strains, e, and ey, for the upper fiber and the lower fiber are .'s follows:

e, = -(;%j + !I%;jg) (B-32)

P, M
e = E*j + -g-;ji (B-33)

where cy and cy are distances from the neutral axis to the upper and lower fibers,

respectively. The stresses f, and f; for the upper and the lower fibers may be expressed
in terms of strains as follows:

fu = e, Eu (B-34)
1, = ¢ E, (B-35)

where E,; and E, are the elastic moduli of the upper and lower fibers, respectively.
The x- and y-components of deflection can be obtained from Equations B-21 and B-22
and can be converted into radial and tangential components, 4 jr and Ajt’ as follows:

A. = 4 _cos{a -8) + A

jr jx iy sin (a - 8) (B-36)

Ajt = Ajy cos (a - B) - ij sin (a - 8) (B-37)

Secondary bending moments are produced by direct forces acting on the radial displacements,
A jt» and initial misalignment of the arch. The secondary stresses are ordinarily neglected
in structural analysis; however, in this arch analysis they are quite significant,

M = T, (4jt + cm) (B-38)

M;" denotes the secondary bending, and Cy, is the initial misalignment, It is evident that
the deflections, stresses, and strains are amgliiied by M;j' as follows:

M + M’

Ay = _LM_L (3-39)

i
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The amplification factor, Ajm, should be used as a coefficient in Equations B-36, B-37,
B-11, B-32, B-33, B-34, and B-35 for the final defleciions, moment, strains, and stresses
at each joint.

Inelastic Range

The procedures described {n the elastic range may be extended to cover the inelastic
range by introducing the variable inelastic modulus, E', when the stress in the section
exceeds the yield stress. Equation B-16 becomes

ML

o = 'El'l' (B-40)

]

The solutions can be obtained by small increments of stress at each joint. When the yield
stress is reached, the inelastic modulus becomes effective at that joint, The forces,
moment, stresges, strains, and deflections are calculated at the point by the equations
shown in the elastic program. The stress increments can continue until the ultimate stress
is reached.

For each change of slope in the stress-strain curve, a corresponding vield stress is
given. Since the strain-hardening materiala do not have a definite plastic range, it becomes
necessary to represent the stress-strain curve by a series of lines (more than two). Figure
B-8 shows the idealized stress-strain curve for the circular arch tested. The variable
inelastic modulus, E', is represented by Eij and E2 in this case.

100
80
£ —
~ 60 B prageeeee
& point of second yield
- Ey fy2 = 58,000 psi
?i point of yield
“woo40 fy = 44,000 psi
E J/
/ El =0, 4E
20 52 = 0,08 E .
/ E =27 x 10 psi
/ fu =7 2,.:% psi
0

0 0.001 0.002 0.003 0.004 0.005 0.00¢

Strain, e (in./in.)

Figure B-8. Idealized stress-strain curve for static analysis.
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Computer Programs

Computer programs (B-1 and B-2) were used for the analysis of the circular arch for
the elastic and inelastic ranges. The programs follow the theoretical derivation of equations
given in this appendix. The source programs are written in FORTRAN language and can be
carried out on an IBM 1620 or IBM 162011 computer. A flow chart showing the sequence of
operations of Program B-1 is given in Figure B-9. Program B-2 is relatively simple, and
no flow chart is needed. The input specifications for the programs are as follows:

Number of bars: variable but subject to the limitations of the computer
memory system

Stiffness parameters: can be varied from joint to joint
Elastic support constant: variable
Loading: uniformly distributed over any portion of the arch

Presentation of Numerical Results

The static properties for materials used in the arches are given in Table 2. Due to the
strain-hardening properties of some specimens, particularly the bottom flanges, the
idealized stress-strain relationship is represented by the trilinear curve of Figure B-8
instead of by the usual bilinear stress-strain curve.

The average elastic modulus of 27 x 106 psi was used; the inelastic moduli, E; and
E9, were 0.4E and 0. 08E, respectively. The average ultimate stress for the bottom flange
was 72, 500 psi. Other input parameters for static analysis of the arch were as follows:

Number of bars n = 16

Angle of segments ¢ = 0.1 .82 radian
Offset angle B = 0.06117 radian
Radius of arch R = 96.0 in.

Stiffness parameter EI = 407.1 x 108 1b-in, 2
Stiffness parameter EA = 177.4x 108 1b

E of top flange Ey = 27.9x 108 psi

E of bottom flang- E, = 26.7x 106 psi
Initial misalignment Cp = 0.0195 in.

Elastic support constant k = 6.25x 10"8 in. /b
Upper fiber from neutral axis cy = 1.29 in,

Lower fiber from neutral axis ¢, = 2.7 in.

Loading was considered uniformly distributed over one-half the arch length. The
magnitudes of the uniform loads used in the analvses were increased by increments of
100 lb/in. from zero to 500 Ib/in. The yield stress of 44, 000 psi was first reached in the
bottom flange at the 1/4-point of the arch, where the stresses caused by axial force and
flexure were of the same sign; the load causing this yielding was 507 1b/in. At a load of
545 1b/in., the yield stress was developed in the bottom flange at the 3/4-point. Higher
loads of 680 and 704 1b/in. produced stresses of 58, 000 psi (point B in Figure B-8) in

the bottom flanges at the 1/4-point and 3/4-point, respectively,
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Figure B-9. Flow chart for the static analysis of the circular arch.
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Program B-1. Analysis of the Statically Loaded Arch, Part I

ANALYS]S OF ARCHES HY VIRTUAL WORK METMOD
PROGRAMED 7/ RICHARD He CHIU / MARCH 196%
DIMENSTION  XIC17)eSMILITIEWILITIOXIIT) oY (17w XRI1T)oYY(1T)oWilT)
CIMENSION ORX{ITIWDRY{LITIWFXMOIT)sTL1 45T (127e2)
FORMAT (14 +6F1246914)

FORMAT(13+5F1544)

FORMAT(134+5F15.8)

FORMAT (/76H JOINTTXIHALLXIHX)&X1IHY1LKSHXX]3X2HYY/)
FORMAT (/76H JOINTTX2HXW1I3XZHYWLZ2X3HSAN]2X3HSYW12X2HXM/ )
FORMAT(/76H JOINTEX4HE eWelUXGH SFWI2XGHDEFX/)
FORMAT(/6H JUINTTIXIHH1GX1HV1I2XSHEWC I )112X3HSYM) 3XZHMX /)
FORMAT (6MJUINT 7XIHH14XIHVIAX1IHSIGXLIHT1I3YGHM{1))
FORMAT{ /6HJOINT 6X2HDX13X2HDYL13XZHDR13IX2HDT 1OXEHFXMLT ) /)
FORMAT (6HJOINT 6X2HFT13X2HFBL13IX2HST1I3X2HSH)

READ 14NsUA+BIRICSASECISPRCNI

READ 14 N3.DWesC19sC24ELEL

GEOMETRY OF CIRCULAR ARCH

DO 9 1=14Ny6

READY oN2oXTUT ) oXTCT41) o XTI 0142 oXIUT+3)9XI(144)oXI(]145)
DO 110 1=14N

N(I)SO.

X(I)SO.

V(I)IO.

XX{1)1=0,

YY(1li=N,

ESTABLISH THE COORDINATES OF JOINTS 1 THRU N
A=DA

XM=Q,

PUNCH &

DO 14 1=2,.N
XU1)=R®#(COS{BI#(]1¢~COSIA)I=SIN(A}RSINIB))
Y(I)=RA(SIN(B)+SIN(A-B))

SECTIONAL COMPONENTS IN X AND Y DIRECTIONS
XX(I)=Xtl)eX(]~1"?

YY{r=Y(l)~Y(]=-1)

PUNCH 24 1sAsXIINoY(I)eXXtI)aYYI(I])

AzA+DA

X AND Y COMPONENTS OF THE APPLIED LCACS

MOMENTS ABOUT O

PUNCH §

DO 19 J=1sN1

SXWs0,

SYW=0.

DO 16 [aN3,N

Wil)i=W(1)+DW

YWasXX{])Y*W(])

XWzYY(1)®W(]}

SXWzSXW+ XW

SYWRSYW+ YW
XM-XM*XN*(Y(I)-YY(l)/2.)+YN*(X(1)-XX(I)IZ-)

PUNCH 24 lToXWoYWeSXWsSYW XM

CONT INUE

PUNCH 2+ JeWIN)

VYN=XM/X (N}

VO=STW~VN

HO=SXW

RSX=0.

RSY=0,

CO 19 K=1+3

XM=z0,

SMX=0,.

SYM=0,

A=s=~B

DO 20 1=2sN
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121

17

25

18
20

131

24

141

26

Program B-1. Analysis of the Statically Loaded Arch, Part I (Contd)

MCMENT AT SECTION X
ACCUMULATIVE AREA OF THE MOMENT DIAGRAM
DS=ReDA/IE®XI (1))

IF(K=2) 11841174117

XMaXMeYY T )R (HO-WITII#YY (1) /72)eXXLIIR(VO=W(T)®XXI]1)/2e)
GO TO 119

XM = X(I1)=-Y(])

EW{I)=XM#DS

SMXaSMX+EWI])
SYMzSYM4EWI T ) RX(I)

IFIK=2) 204s121,12)
HO=HO-W{l)®#YY(])
VOEVO-W(T)1#XX(])

IF(K=2) 20420417

A=zA+DA

ORX(1)==rO® XX (1) / (CSASE)
RSXERSX+DRX U]}
DRY(1)=e=VORYY([)/(CSARE)
RSY=RSY+DRY (1)
RR=HO®COS(A)+VO®*SIN{A)
RT=VO#CQOS(A)~HO®SIN(A)

T(1)=RY

FXM(]1)=XxM
STUIe1V=RT/CSASXMRECL/XI(])
ST(1+2)=2RT/CSA-XMRC2/XI ()
PUNCH 2+ 13sHOsVOIRRRT 4 XM

GO TO 20

PUNCH 29 1sHOGVOIEWIT ) »SYMeXM
CONT INVE

EWIN)z=SYM/X (N}
EW(1l)=~(EWIN)+5SMX)

SXMz=0.

SEW=EW(l}

PUNCH 6

PUNCH 3y N2+EW(]L) s SEW9SXM

DO 26 I=2.N

SXM=SXM+SENRYY(])

PUNCH 3y T9Ea(l)eSEWeSXM
SEW=SEW+EW(])

IF(K=2) 229+21414]

DEFLECTION OF THE ARCH

Az==R

PUNCH 192

DC 26 [=24N

STT=ST(1s11)/E

STu=5T(1+21/E1

PUNCH 3¢ JoSTUIel)eST(102)e5TTeS5Th
DXx=Ja

NY=0,

SEwzEW(])

ROX=z=RSX/Y(N)

ROY==RSY/X(N)

PUNCH 10

DC 23 Jz2eN
DX=DX+SFweYY(I1)+ROX%YY({II+CRXI(T)
DY=DY+SEWeXX(])+ROY®XX([1+TRY( 1)
SEW=SEWeEWI )

AzA+DA

ODRsDX#COS(A)+DY*SIN(A)
DTI=DY*COS(AY=UX®SIN(A)

EFFECTS OF STRCDS AMPLIFICATION
AMPFzFXMUI)ZUFXALTI+T(1I®(DR=-{C))
FXM(1)<FXMUL)®AMPF /100 o

IF (AMPF~(0e5) 14241424147

T1 Continued
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Program B-1. Analysis of the Statically Loaded Arch, Part I (Contd)

ADX=DX

ADY=DY

60 TO 23

ADXzDX®AMPF

ADY=DY®AMPF

DH=DR®*AMPF

AT TH#AMPF

PUNCH 3¢ T 3ADXsADY NP 4DT4FXM( )
60 10 19

SFFECTS OF HORIZONTAL ELASTIC SUPPORT
XR={ SAMRSPRC/SXM] =SXM) /SXM]
HO=S5XW=XR

VOEXR+VO+5YW

PUNCH 8

AXTAL AND SHFAR STRFSSES !N THE ARCH
RR=HO®COS(B)=VO#SINI(B)
RT=HO®SINIL) +VURCOS(5)

XM=y

PUNCH (s N2+sHOWVOIRR4RT o XM

GO T0 19

SXM1=5XM

PUNCH 7

CONT ITNUF

IF(SENSF SWITCH 1) 100,101
PAUSE

END
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Program B-2, Analysis of the Statically Loaded Arch, Part I

DIMENSION X(9+17)e5X(99)sR{4)+5R(4&)

FORMAT (3XeeF15458)
FORMAT (33Xe3F15.81)

FORMAT (1442FB84Us3F940+2FBeUsdFBe4)

FORMAT (3Xs4F15.87}
FORMAT ( /7/3X)

FORMAT (/4H BARSXoIHWaOXs4HR( 1) ¢GXeGHRI25 95X e4HRII) 95X s4HR (L)

14X 95HV(SR)Y /)
FORMAT (/4H JT4e2Xs6HDIRe Fo3X e SHOHEAR 43X 9 6HMOMENT ¢ 7X 4 BHSTRESSESS
110X s THSTRAINS s 60X+ 1UHUEFLECTION)
8 FORMAT (&M KOse3XsaHILB)s5Xe4HILB) s9H
16HBIPST)91TH

FORMAT (3Xs F15.87)

DO 111 J=1.9

DO 111 1=}1,%3

SX{leJ)=Ge

DO 112 I=1s6

SR(11=0.

Sw=0,

READ 3, M,y(5+C13sS

READ 9w

READ 14R(3)sR{G)YX(291)0X(20e1)
PO 11 J=2,16

READ 2eX(€24J1sX(19JY

READ 4sRUL1)sR(E2)9XU201T)eX(1017)
VeX(291)1404763%(X(2s2)=X{291)})
DO 12 1=zl,4

R{1)1=ABS(R(I)Y)

D0 21 J=2+4

READ 1y X(G4sJ)oX(S5esJ)YaX(63J)eX{(TeJ)
READ 1o X(4951eX(5:5) sX(695)9X(T95)

X{635)=X(4s5)%C5
X(545)1=X(5+5)%C5
DO 22 J=6412

READ 1y X(4eJ)eX(59J)sX(69J) s X(TeJ})
READ 19 X(4913)1sX(54131sX(69131eX(7513)

X(5+13)1=X(5+13)%C13
Xtas13)=X(44133%C13
DO 23 J=14,417

READ 1y X(OsJ)aX(55J) oX(659J)eX(TeJ)

DO 26 1=4,7

DO 29 J=2417
Xtled)==X(19J}
X{lsl'=XU{1017)

READ &

D0 31 1=8,9
X(lel)=0o

X(3411=0,

DO 32 U=2,.17

READ 24 X(B89J)eX(95U)sXi3sJ)
NO 42 J=1417

DO 41 1=6,7
K{ioJizXiledi®ieOE+6
X{(3eJ)=X(3J18),0€43
GO TO (45451952)0M
SW=«

Svsv

DO 46 1=z144
SRII1=RI(T)

DO 43 J=1,9

00 43 121,9
Ksle2#(J=-1)
SX(193)=X(19K)

GO TO 60
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Program B-2. Aaalysis of the Statically Loaded Arch, Part II (Contd)

FAC==(S5+45X(5+3))/X(5+5)
GO TO %)

FACR{S=SX(5+7 ))1/X(5+13)
WaFAC®Y

VaFACsyY

DO 54 =144
R(I)=R{1)#FAC

0O 55 JU=1,17

DO 55 =1,9
XK{laJdiaX{IsJIRFAC
SWaSW+W

SV=SVev

DO 57 t=1.4
SRUT)=SR(1I+R(])

DO 56 J=1,+9

DO 56 1=1,+9

Kele28(J~-1)
SXULeJ)=SX{IsJI4+X(]sK)
NI=(J=-2)#2

PUNCH 6

PUNCH 3y NJ» We RU1)s R(2)s RU3)s R4}V
PUNCH 7

PUNCH 8

DO 61 U=1,17

KeJ=]

PUNCH 3y Ky X(loJd)e X(20J)e X(39J)s XlhsJ)s X(SsJ)e X(59J)s

1 XUTeJdde XU8sJ)s X(34J)

PUNCH 6

NJ=NJ/2

PUNCH 3¢ NJ»SWeSR(1)9sSR(2)95R(3)sSR(4) 5V

PUNCH 7

PUNCH 8

DO 62 J=1,9

KeJ=]

PUNCH 39 KeSXU1oJ)eSXKU20Jd)s5X{39J)eSX(L0ed)eSX{5eJ)eS5X(5ed)s

1SXETod)sSX(Bsd)sSX(F9J)

101

1F (SENSE SWITCH 2) 100,101
CALL EXIT
END
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A load of 866 1b/in. developed the ultimate stress of 72, 500 psi in the bottom flange
at the 1/4-point. At a load of 877 1b-in., the bottom flange at the 3.'4-point also attained
the ultimate stress. If this load were maintained, the arch would continue to deflect until
collapse occurred.

The results of the theoretical response in the elastic and inelastic ranges are given
in Tables B-1 through B-4. Table B-1 summarizes the reactions and radial shear at strain
rosette 33-13-14-15, The location of the rosette is shown in Figure 6; the directions of the
reactiong are shown in Figure B-1.

Table B-2 summarizes the theoretical results at the 1/4-point of the arch. At this
section the direct forces are maximum and the shearing forces are minimum for each level
of load. Maximum stress and strain values occur at this location in the bottom flange.
Positive radial deflections are in the outward direction.

Table B-3 summarizes the theoretical results at the c»own of the arch. The positive
shear and tangential displacements are maximum at this location. The direction of positive
tangential displacement is shown in Figure B-3.

Table B-4 summarizes the theoretical results at the 3/4-point of the arch, The bending
moments and the radial deflections are maximum at this location; the axial and shearing
forces are small.

Table B-1. Summary of Elastic and Inelastic Reactions and
Shears of the Statically Loaded Arch

Load R(1) R(2) R(3) R(4) V(SR)”
(1b/in. ) (Ib) (lb) (b) (lb) (1b)
Elastice
100 4,590 2,520 1,800 4,860 -1, 700
200 9,180 5,040 3,600 9,720 -3,400
300 13,800 7,560 5,400 13,580 -5,10¢
400 18,400 10, 080 7, 200 19,440 -6,800
500 23, 000 12,600 9, 000 24,300 -8,500
507 23,300 | 12,800 9,120 24,600 -8,630
- Inelastic

545 25, 000 13,800 9,760 26,400 -9,23¢
680 31,260 17,200 12, 200 33, 000 -11,600
704 32, 200 17,900 12,500 34,100 -11,900 .
866 39,700 21,900 15, 500 42, 000 -14,700
811 40, 200 22,200 15,700 42,600 -14, 900

*V(SR) are shearing forces at strain rosette SG-13-14-15,
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\lomputations of direct force, shear, bending moment, stresses, strains, and
deflections were made for all joints. However, Tables B-2 through B-4 tabulate those
values for only the 1.'4-point, the crown, and the 3 4-point. ‘The distribution of direct forces
along the arch varied from a maximum at the 1.'4-point to a minimum at the 3 4-point (e.g.,
from 10,400 1b to 8, 500 1b at a load of 200 1b in.). The 1 4-point and 3 4-point had maxi-
mum bending moments and nearly zero shear. The fact that the shear was not zero at these
points indicates that the maximum bending moment does not occur exactly at either quarter
point. This would tend to provide a theoretical stiffness of the arch that is slightly higher
than it would be if a greater number of bars was considered in the theoretical solution.

A theoretical curve of load versus deflection is shown in Figure 23.
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Appendix C
DYNAMIC ANALYSIS OF A CIRCULAR ARCH

The dynamic response of a two-hinged circular arch subjected to dynamic load
distributed uniformly over one-half the arch length was calculated for the elastic and
inelastic ranges. A substitute discrete framework was used in the analysis, and the
numerical results were obtained by the iterative method of numerical integration. The
original investigation was performed under contract by Eppink (References 15, 16, and 17).
Variations and additional comments were made primarily for clarity and continuity of this
report.

Analogous Framework

As pointed out in the static analysis of the circular arch of Figure B-1, the exact
solution of the continuous arch with distributed mass is impracticable. This is even more
80 in the dynamic analysis of the circular arch. In order to simplify the solution, it is
desirable to represent the original continuous arch by a discrete framework consisting of
a series of rigid bars and flexible joints, The following assumptions are made regarding
the analogous framework in the elastic range:

1. The rigid bars are assumed to be massless and straight.

2. The flexible joints have the elastic properties of the arch section included between
the midpoints of the adjoining segments.

3. The distributed mass of the segment is lumped intc o concentrated mass at the
joint.

Due to the complexity of the stress-strain relationship in the inelastic range, further
assumptions regarding the section properties of the arch are needed:

1. The cross-sectional area of the arch is composed of two flanges and a thin web of
Zero area.

2. The web is assumed to be rigid in shear but resists no axial force.

Schematic representations of the circular arch and the analogous framework are shown
in Figures C-1 and C-2, respectively. The joints of the discrete framework are numbered
consecutively from 0 at the left support to n at the right support, and the bars are numbered
from 1 to n. A subscript notation is used to identify the locations of joints along the arch.

A representative joint is designated by subscript j; joints j-2, j-1, j+1, j+2, and j+3 are
designated by h, i, k, £, and m, respectively. The same system is also used for bars such
that bar j connects joints i and j.

The deformed arch is represented by the radial and tangential components, 4;, and
4;t, of the displacement of the joints. All displacements are measured from the undeformed
position of the joints, and the directions of positive displacements are shown in Figure C-2,
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Figure C-2. The analogous framework. .
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Development of Equations of Motion

The forces acting at the erds of a typical bar and joint are shown in Figure C-.3. They
include the axial force, Pjt. the transverse shearing force, L,-; the bending moment, Mj;
the damping forces, cedjt and ceAjr, and the applied force, The applied force is

expressed in terms of its components, F, and Pj“ to the left and right of the joint j,
respectively. Summing the components of all internal forces in the radial direction, one
obtains the following expression for internal resulting force in the radial direction, Zjyr

Zj, = -Pysin ('g - ‘l’j) - Py, sin (% + "'k)

* Pjr cos (% - "'j) = Fgr 08 (% * wk)

where i denotes the rotation of bar j and ¥ denotes the rotation of bar k. Considering
a small Aeformation such that sin ¥ « ¥ and cos ¥ = 1, the above equation can be written
in the followingoform:

er = -(Pjt + Pkt) sln% + (Pjt qu - pkt wk)cos%

+ (Pjr - pkr) cos% + ( ir wl + P wk) sin% (C-1)

Similarly, the tangential component of the internal resulting force, Z{, may be
obtained by summing all the internal forces in the tangential direction as follows:

Zy, = -P,, cos (-‘g - wj) + Py, cos (% . wk)

- Pjr sin (-g - wj) - Py, sin (% * 'le)

and for a small deformation this reduces to
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Figure C-3. Free body diagrams for a typical bar and joint,

The shearing forces Pjr and Pkr in the above equations are related to the bending
moments Mj, Mj, and Mg as follows:

M, - M, M, - M \
Pir * f+ 3j , Per = 'L'+_lak (C-3) .

where 4; and dk are deformations of the bar j and bar k, respectively., The axial forces,
Pjt, and shearing forces, Pjy, are taken at the center of the bars, and the bending moments,
j» are taken at the centers of the joints.
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The external pressure is considered to act normal to the arch surface. The distributed
load is represented by a series of concentrated forces acting at the joints, For convenience,
the concentrated forces are represenied by their components, Pj! and Pjr, which are
positive in the outward direction. By summing the external forces in the radial direction,

one obtains the expression for the external resultant force in the radial direction, Wi,
as follows:

wjr = Pj! cos (% - qu) + Pjr cos (-g+ wk) - g 'ijr

where ce is the coefficient of external viscous damping, and a dot superscript denotes
differentiation with respect to time, In the absence of specific information regarding the
internal damping of various types, the external damping is taken to be the total damping of
the system, The coefficient c, is obtained from experimental sources. For small displace-
ment, the above equation becomes

W, = (pj‘ . pj') cos § « (pj‘ v - P wk)sm% - e by (C-4)

Similarly, by summing the external forces in the tangential direction, one obtains
the expression for the external resultant force in the tangential direction, th, as follows:

- _pl.. (2 r_. (¢ _ y
th = Pj sm(2 -wj) + Pj sm(2+¢k) ceAjt

and for a small displacement, it becomes
Y T @ ] r _ . -
W, - (pj P, )sm 2 . (Pj vy + P ¢k) cos $ ce 4y (C-5)

The equations of motion for mass mj in the radial and tangential directions are as
follows:

ma_ =2 + W (C-6)
ma, =2, + W (c-7)

wilere 4;. and 4j; are the radial and tangential accelerations of the mass mj.

The schematic representation of the displacement-deformation relationships is shown
in Figure C-4, where ab and a'o' are the positions of bar j before and after deformation.
Let the projection a'c’ on ab be designated by L + éj; then 8; can be expressed in terms
of the displacements of joints i and j as follows:

i - - . 2 .
dj (Ajt Ait) cos% (Ajr + Alr) sin 5 (C-8B)
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Figure C-4. Sc..ematic representation of displacement-deformation relationships.

Let the projection ¢'b' in the direction normal to ab be designated by L$j; then

v; = %[(Ajt « dy)sing - (40 - 4yy) cos %] o

The length of the deformed bar, a'b', can be expressed in terms of the deformation, é;,
as follows:

The deformation of the bar j is then

’ d\2
= -1 + 7.2 o x & +l 72 .
6]. = L [ 1 l/l] + ( L) 6j 2 Llllj {C-10)

Similarly, the rotation of tke bar j, ¥j, can be expressed in terms of s j and !7]' as follews:

R

.pj = tan'l—-—li—af qu( --ﬂ-) (C-11)
1 +—]i-
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Similarly,
v‘;j _( 3)
sin g, = _—_-j—za o \1 -
$2+ 1+-£-)
i
]
1+
cos¢j= -& - 2

1-
T iy 7%
dlj + (1 + -t)

where 5j and §j are the first-order approximations of ¢; and ;. The angular change at
joint j, Oj, is

(C-12)

and its first-order approximation, 5,, is

oj:wk_

A

(C-13)

The geometric relationships and the equations of motion developed in the preceding
paragraphs are general; they are valid irrespective of the material properties. In order to
formulate the force-deformation relationship, distinctions between the material properties
in the elastic and inelastic ranges must be made.

Elastic Range. Taken from midpoints of the adjacent bars, the deformation to the
left and to the right of joint j can be expressed in terms of internal forces and section
properties of the joint as follows:

r
o

st o Ll
i T2 EA
» (C-14)
s - L 0t
;T 2EA

where E A;, the extensional stiffness parameter, is the product of the elastic modulus and
cross-secfional area of joint j. The total deformation of bar j is expressed as follows:

_ r | |
aj = di + dj (C-15)
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Combining the above expression with Equation C-14 and solving for the axial force due
to elastic strain, Nj, one obtains

EA, /b
N, = 2 —1—(-1-> (C-16)

In the absence of extensional damping, the total axial force, Pjt, equals Nj.
Similarly, the bending moment, Mj, is expressed in terms of angular change, Oj,
and the flexural stiffuess parameter, E XJ, of joint j as follows:

EI
M = 1:L9j (C-17)

Inelastic Range. In the inelastic range, the actual arch cross sections are
approximated by a section consisting of two flanges. For simplicity, the idealized bilinear
stress-strain curve of Figure C-5 is used to correlate the force-deformation relationships.
The curve is shown in dimensionless form such that the slope of the elastic portion is unity
and yielding occurs when the value of f/fy is equal to one. The slope of the inelastic portion
is Ej-E, the ratio of the inelastic modul’t;s to the elastic modvlus of the arch material.
Unloading is assumed to take place along a line, AB, parallel to the elastic line. The
intercept of AB on the e'ey axis is the instantaneous set, b/ey. Unloading will continue
along this line until a new "elastic' limit is reached at B. The projected length of AB on
the vertical axis is 2f/f,. Further unloading will occur along a line with a slope of Ey. E.
A possible path of a loaxing and unloading cycle is represented by OABCD in Figure C-5.

£
A
fy

1 --E'
L — 1
1.0 3

Figure C-5. Bilinear stress-deformation relationship.
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In the inelastic range, the stress-deformation relationship is rather complicated. It
becomes necessary to determine the deformations in the flanges before the stress, moment,

-and axial force in each joint can be calculated. A schematic representation of the flange

deformations is shown in Figure C-6. Additional subscript notations, t and b, are intro-
duced to designate the top and bottom flanges, respectively.

Figure C-6, Schematic representation of deformed joint.

To avoid the time-consuming process of solving numerous simultaneous equations,
additional approximations are needed. The distribution of angular change to the left and to
the right of a joint is inversely proportional to the relative stiffness, EI/L, of the adjacent
bars; the distribution of axial deformation is inversely proportionai to the equivalent cross-
sectional areas, EA, of two joints. Considering the arch to have uniform cross section
along its length, the deformations are given by the following equations:

4 = %("j * S 9])

e
-~

1]
2o
o

- cjb Oj)
(C-18)

R |
4 = 2(6k * St oj)

bip = %(‘k - oj) )
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where et and clb are the distances from the neutral axis of joint j to the top and bottom
flanges, respectively. Equations C-18 give exact results for all deformations in the elastic
range. Specialized conditions must be used to account for the boundary condition at the
support. For hinged supports the elastic angular change, 6, is zero. The following
expressions are obtained for icints o and n:

L

ot ob ~ 2
(C-19)

é

t _, t_5%

ont -6:1b =72

As a result of the assumptions used to obtain Equations C-18, the equilibrium

conditions at the joints can only be met by introducing the average axial forces and moments
as follows:

1 by r 1 2 .
Py =7 (Pit e Pyt e Rt pjb) (C-20)
_ 1 2 ] r T .
M, = 3 (pjb b - Pie' ot Py gy - Py cjt) (C-21)

Method of Numerical Integration

Equations C-6 and C-7 may be expressed in terms of the radial and tangential -
components of displacement for joints 1 through n-1 by using the relationships established
in the preceding section. The solution of the dynamic response of the arch is obtaired by
satisfying a set of 2 (n-1) simultaneous nonlinear differential equations of motion. To
accomplish this, a method of iteration and numerical integration is used.

The process of iteration begins at time, t,, with known values of displacements,
velocities, and accelerations of all joints in the system and proceeds to solve for the corre-
sponding quantities for a time, tp,1, at a small time interval, 4t, from t,. It should be
noted that .the initial values of displacements, velocities, and accelerations may be estimated =
or assumed. However, good estimates will ensure a speedier convergence. A step-by-step -
operation of this method will be shown in the following paragraphs. Each of the following
operations is to be repeated for the components of displacement at each joint of the system.

IET

1. Assume or estimate a set of values of displacements, velocities, and accelerations
at a chosen time t,. For example, at initial time, t,, all quantities may be taken to be
zero; at time t,; the quantities may be assumed as the corresponding quantities at time tp.1.

2. Assume a function for accelerations for the =mall time interval and evaluate the
values cof velocities and displacements at the end of the time interval in terms of the accelera-
tions, velocities, and displacements at the begi?mng of the interval. To accomplish this,
the following equations obtained from Newmark *¢ are used:

PRCTe, Sy

"

. e 1,
n«1 = ¥, * Z(M)xn * Z(At)xm»l

(C-22)

”
[

o= X v AN +(-;—-p) (At)ziin . ﬁ(m)zsiml
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where x may be taken to be either component 4, or 4 it of displacement at joint j. The
dots denote differentiation with respect to time; lhe subscrlpts n and n+1 correspond to
times t, and t,, 1, respectively; B depends on the assumed variation of the accelerations
within the time interval, At. 8 is 1/6 for a linear variation of the accelerations.

3. Calculate &;, ¥, and §; of Equations C-10, C-11, and C-13 using the values of
displacement at the end o(’ the time interval,

4. Evaluate Wjr and Wy of Equations C-4 and C-5 for external force components.

5. Ewvaluate Pj; and M+ of Equations C-16 and C-17 for the elastic response of axial
force and moment at joint j. The corresponding quantities can be evaluated from Equations
C-20 and C-21 using information from the stress-strain curve and Equations C-18 and C-19.

6. Evaluate Qr, Zjr, and Zj; of Equations C-3, C-1, and C-2 for shearing force
and the components of internal forces at joint j.

7. Determine a new set of accelerations of Equations C-6 and C-7 with the results of
WJr, th, er, and th.

8. Compare the derived accelerations with the assumed accelerations.

9. Substitute the derived accelerations for the corresponding assumed accelerations
if the agreement is not satisfactory, and repeat steps 2 through 9. Proceed to the next time
interval when a satisfactory degree of agreement is reached, and repeat steps 1 through 9.

The above iterative procedure was intended for the dynamic arch response. However,
a quasi-static response can also be obtained from the dynamic program by introducing a
relatively high level of damping.

Computer Program

A cousputer program was prepared for the procedures described in the previous
section. The source program is written in ALGOL language and can be carried out on the
Burroughs B-5000 computer at the University of Virginia. The general « »abilities and
features of the programs are as follows:

Number of bars: variable but subject to the limitations of the computer
memory system

Stiffness parameters: can be varied from joint to joint

Support conditions: varying from fully hinged to fully fixed supports™

Loading conditions: arbitrary in distribution and magnitude, The time
variation of load is considered linear

Output quantities: axial force, bending moment, radial and tangential

components of displacement, stress, and strain
Properties of the Circular Arch and Load Function

The geometry of the two-hinged circular arch and the distribution of loads are shown
in Figure B-1. The parameters of the arch are as follows:

Radius of arch R

"

96. 0 inches

Span of arch Lo

Angle of opening ¢0

143. 8 inches

97.01 degrees

*See Reference 15 for derivations of moment-resisting supports,
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The curvature of the circular arches was obtained by the cold-roll process, and the
flanges of the 4M13 rolled section were strained beyond the yield point. The dynamic stress-
strain curves do not show the familiar yield plateau. For simplicity, the idealized dynamic
stress-strain curves for the component parts of the arch cross section are taken to be
bilinear as shown in Figure C-T.

The idealized time variation of the dynamic load is represented by a triangular decaying
function with initial peak load, pg, as shown in Figure C-8. The load duration, t5, is
taken to be 1, 6 seconds for all magnitudes of the peak loads.

70 —l-
/\4M13
60 E =28 x 10° psi
fy = 66,500 psi
50
upper flange strips
e =31 x 108 psi
=] = 51,000 psi
< y
3
o
5 % /
20
10
0
0 0.001 0.002 0.003 0.004 0.005

Strain (in./in.)

Figure C-7. Idealized dynamic stress-strain relationship,
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Figure C-8. Load-time relationship.

The cross-sectional properties of the arch in the elastic range are represented by the
stiffness parameters, EA and EI, as follows:

6

EA 177.4x 10" 1b

i

2

EI = 407.1 x 10° 1b-in,

The cross-sectional properties of the arch in the inelastic range are more complicated;
the actual cross section is represented by two flanges. Attempts were made to provide the
closest approximations of the actual cross-sectional properties. The following set of
parameters were used:

Area of top flange A, = 3.815 .2
Area of bottom flange A, = 2.288 in.2
Modulus of elasticity of top flange Et = 30 x 106 pst
Modulus of elasticity of bottom flange Eb = 28 x 108 psi
Yield strength of top flange fyt = 55, 300 psi
Yield strength of bottom fiange fyb = 66,500 psi
Distance between flanges d = 3.15 in.

In the absence of specific information on the damping characteristics of the arch
material, it was assumed that the external camping measured by experimental means repre-
sented the total damping of the system. An average damping factor, v, of 0,095 was
observed from the fundamentai antisymmetrical mode of the free vibration tests. In order
to conform with the damping term used in the computer program, the above damping factor
was converted to that of a complete ring oscillating at the frequency corresponding to the
""breathing'’ mode.
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As shown in Appendix D, the first antisymmetrical frequency of the arch was 59. 9 cps,
and the "'breathing’’ mode frequency of a complete ring was 317.3 cps. The equivalent
damping factor, »', was as follows:

y _ 99.9 _
V' = 3173 (0.095) = 0.018

Presentation of Numerical Resul*~

Dynamic responses of the arch in the elastic range were obtained for peak loads of
200 1b/in. and 400 lb’/in. For loads above 400 lb,in., the inelastic behavior of the arch was
anticipated and the inelastic program was used. As a comparison, the load of 400 1b.'in,
was repeated in the inelastic solution. The loading was increased in increments of 100 1b- in.
up to 700 1b/in. and then increased in 50-1b.in. increments. A maximum dynamic load of
800 1b/in. was used in the solutions.

The results of dynamic solutions for elastic response for peak loads of 200 1b/in. and
400 1b/in. are given in Table C-1, along with the maximum values of bending moments,
axial forces, radial and tangential displacements, and the corresponding times when the
maximum values occurred. The inelastic responses for loading between 400 1b.in. and
800 1b/in. are given in Tables C-2, C-3, and C-4. All solutions were based on a 16-bar
system; however, data are presented for intervals of one-eighth of the arch length. At the
maximum load of 800 1b-'in., the convergence of radial and tangential displacements was
slow. The maximum displacements were not obtained at several locations of the arch as
indicated in Table C-4.

The maximum elastic and inelastic values of moments, axial forces, and radial and
tangential displacements at the quarter points and the crown of the arch are presented in
graphic form in Figures C-9 through C-12. The bending moment curves for the quarter
points coincide with each other in the elastic range, but their signs are different. Bending
moments at the crown are comparatively low. The maximum values of axial forces do not
vary appreciably at the quarter points and at the crown of the arch, as shown in Figure C-10.

The maximum radial displacements occur at the 3/4-point and the maximum tangential
displacements occur at the crown of the arch. -

The time interval within which the maximum values of various response functions are -
attained is only a very small fraction of thc entire load duration. The decrease of the load
from its peak value is very small within this time interval.

The time-variant traces of moment and displacements show that the major contribution
came from the first antisymmetrical mode of vibration. This observation can be made from
the moment curves and displacement curves of Figures C-13 and C-14 for a peak load of :
200 1b,'in. The period of major oscillations corresponds to the period of the first antisymmet-
rical mode of the arch in free vibration. It should be noted that the influence of the third
symmetrical mode is also present, but the effects are comparatively small,

The predominant oscillation of the axial forces oc- irs at a frequency corresponding to
the second symmetrical mode of vibration, which is cluse to the "breathing' mode for a
complete ring. The time variant traces of axial forces near the crown and supports of the
arch are shown in Figurc C-15. It can be seen that the variation of axial forces along the
arch is small. ! .

In the inelastic range, the response frequencies and modes of various functions are
modified. Increases in the natural period of the response curves are expected as the
stiffness of the arch decreases.

AT

93

b IR o i
<«




S LA

Ay

S

oA

Load, p (Ib/in.)

to=1,6 sec

Time, tewng (sec)

Figure C-8. Load-time relationship.

The cross-sectional properties of the arch in the elastic range are represented by the
stiffness parameters, EA and EI, as follows:

6

EA 177.4x 10" 1b

407.1 x 10% 1b-in. 2

EI

The cross~sectional properties of the arch in the inelastic range are more complicated;
the actual cross section is represented by two flanges. Attempts were made to provide the
closest approximations of the actuzl cross-sectional properties. The following set of
parameters were used:

Area of top flange At = 3.815 in, 2
Area of bottom flange Ab = 2,288 in, 2
Modulus of elasticity of top flange E' = 30x 106 psi
Modulus of elasticity of bottom flange Eb = 28 x 106 psi
Yield strength of top flange fyt = 55, 300 psi
Yield strength of bottom flange fyb = 66,500 psi
Distance between flanges d = 8,15 ia.

In the absence of specific information on the damping characteristics of the arch
material, it was assumed that the external damping measured by experimental means repre-
sented the total damping of the system, An average damping factor, v, of 0,095 was
observed from the fundamental antisymmetrical mode of the free vibration tests. In order
to conform with the damping term used in the computer program, the above damping factor
was converted to that of a complete ring oscillating at the frequency corresponding to the
"breathing'' mode.
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As shown in Appendix D, the first antisymmetrical frequency of the arch was 59. 9 cps,
and the "breathing’’ mode frequency of a complete ring was 317.3 cps. The equivalent
dariping factor, »', was as follows:

' n 9.0 =
¥ = 373 (0.005) = 0,018

Presertation of Numerical Results

Dynamic respgonses of the arch in the elastic range were obtained for peak loads of
209 lo/in. and 400 lb‘in. For loads above 400 lb.in., the inelastic behavior of the arch was
anticipated and the inelastic program was used. As a comparison, the load of 400 It 'in,
was repeated in the inelastic solution. The loading was increased in increments of 100 b in.
up to 700 1b/in. and then increased in 50-1b/in. increments. A maximum dynamic load of
800 1b/in, was used in the solutions.

‘The results of dynamic solutions for elastic response for peak loads of 200 lb/in. and
400 1b/in. are given in Table C-1, along with the maximum values of bending moments,
axial forces, radial and tangential displacements, and the corresponding times when the
raaxiraum values occurred. The inelastic responses for lcading between 400 1b.'in, and
800 1b/in. are given in Tables C-2, C-3, and C-4, Ali solutions were based on a 16-bar
system; however, data are presented for intervals of one-eighth of the arch length. At the
maximurn load of 800 1b in,, the convergence of radial and tungential displacements was
slow, The maximum displacements were not obtained at several locations of the arch as
indicated in Table C-4.

The maximum elastic and inelastic values of moments, axial forces, and radial and
tangentixi displacements at the quarter points and the crown of the arch are presented in
graphic form in Figures C-9 through C-12. The bending moment curves for the guarter
points coincide with each other in the elastic range, but their signs are different. Bending
moments at the crown are comparativel, low. The maximum values of axial forces do not
vary appreciably at the quarter points and at the crown of the arch, as shown in Figure C-10.
The maximum radial displacements occur at the 3/4-point and the maximum tangential
cisplacements occur at the crown of the arch.

The time interval within which the maximum values of various response functions are
attained is only a versy amall fraction of the entire load duration, The decrease of the load
from its peak vaiue is very smal) within this time interval.

The time-variant traces of moment and displacements show that the major contribution
came from the first antisymmetrical mode of vibration. This observation can be made from
the mmoment curves and displacement curves of Figures C-13 and C-14 for a peak load of
200 b 'in. The period of major oscillations correspounds to the period of the first antisymmet-
rical mode of the arch iv free vibration. It should be noted that the influence of the third
symmetrical mode is also present, but the effects are comparatively small.

The predominant osciliation of the axial forces occurs at a frequency corresponding to
the second symmetrical mcde of vibration, which is close to the "breathing' mode for a
complete ring. The time variant traces of axial forces near the crown and supports of the
arch are chown in Figure C-15. It can be seen that the variation of axial forces along the
arch is small,

In the inelastic range, the response frequencies and modes of various functions are
modified. Increases in the natural period of the response curves are expected as the
stiffiess of the arch decreases.
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Table C-1. Maximum Response From Dynamic Loading (Elastic Program)

Axial Radial Tangential
Location Moment | Time Force Time | Displace-| Time | Displace-} Time
(in. -1b) }(msec) (1b) (msec) ment (msec) ment (msec)
(in.) (in.)
P, = 2001b/in.
Left support 0 0 0
1/8 point -124,000 | 9.0 | -19,100 | 1.5 0. 202 8.9 -0. 025 8.3
1/4 point -161,000 | 8.5 | -19,500 | 8.0 0.278 8.6 -0, 080 8.3
3/8 point -116,000 | 7.9 { -19,100 | 8.0 0. 187 7.1 -0.134 8.2
Crown 30,000 | 3.2 | -18,800 | 1.5 -0. 027 10.3 -0.155 8.1
5/8 point 118,000 | 9.0 | -18,700 | 1.5 -0. 221 8.0 -0.131 8.0
3/4 point 161, 000 7.2 -19,100 1.7 -0.302 7.8 -0. 075 7.6
7/8 point 123,000 | 7.1 -19,800 | 1.8 -0.215 7.8 -0. 021 7.1
Right support 0 -20,300 | 1.8 0 0
P, = 400 Ib/in,
Left support 0 0 0
1/8 point -254,000 | 9.0 } -38,100 | 1.4 0.410 8.9 -0.053 8.3
1/4 pcint -328,000 | 8.5 | -39,200 | 8.0 0.560 8.6 -0.165 8.4
3/8 poirnt -233, 000 8.0 -38,400 8.0 0.374 7.4 -0.272 8.3
Crown 61,000 { 3.2 | -37,500 | 1.5 -0. 062 10.2 -0.314 8.2
5/8 point 242,000 | 9.0 | -37,400 | 1.5 -0.456 8.0 -0. 368 8.1
3/4 point 327,000 | 7.2 | -38,100 | 1.7 -0.617 7.9 -0.151 8.0
7/8 point 250,000 | 7.7 | -39,600 | 1.8 -0.438 7.8 -0.041 7.1
Right support 0 -40,500 1.8 0 0
Table C-2. Maximum Response From Dynamic Loading (Inelastic Program)
Axial Radial Tangential
Location Moment | Time Force Time | Displace-| Time |Displace- | Time
(in, -1b)} |(msec) (Ib) (msec) ment (msec) ment {msec)
i (in.) (in.)
P, = 400 1b/in.
Left support 0 0 0
1/8 point -254, 600 9.1 | -38,000 | 1.5 0.405 9.0 -0.053 8.4
1/4 point -326. 000 8.5 | -39,000 | 8.1 0. 552 8.6 ~0.182 8.4
3/8 point -234, 000 8.0 | -38,400 | 8.1 0.3 7.2 -0.270 8.3
Crown 61, 000 3.3 | -37,500 ; 1.5 -0.082 | 10.2 -0.312 8,2
5/8 point 242,000 9.1} -37,400 | 1.5 -0.454 8.1 -0.263 8.0
3/4 point 32¢, 000 7.2 | -38,100 | 1.8 -0.614 7.9 -0.151 1.4
7/8 point 251, 000 7.8 | -39,700 | 1.8 -0.434 7.8 -0.041 7.2
Right support 0 1 -40,500 0 0
P, = 5001ib/in,
Left support 0 0 0
1/8 point -2917, 000 9.2 | -47,500 ; 1.5 0.517 9.2 -0, 066 8.5
1/4 point -371, 000 6.4 | 47,000 | 1.5 0.724 9.1 -0.211 8.1
3/8 point -269, 000 6.6 | -47,000 | 1.5 0. 461 7.0 -0.350 8.6
Crown 95,000 | 10.2 | -48,800 | 1.5 -0.122 | 10.5 -0.398 8.5
5/8 point 301, 000 9.2 | -46,700 | 1.5 -0, 580 8.4 -0.334 8.2
3/4 point 408, 000 7.8 | -47,600 | 1.8 -0, 783 7.9 -0.190 7.5
7/8 point 308, 000 7.7 | -49,500 | 1.8 -0. 546 7.9 -0.050 7.2
Right support 0 -50, 700 1.8 0 0
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Table C-3. Maximum Response From Dynamic Loading (Inelastic Program)

_ Axial ) Radial Tangential
Location Moment | Time Force Time | Displace-| Time | Displaca-| Time
(in. -1b) |[(msec) (1b) (msec) ment (msec) ment {msec)
(in.) (in.)
B, = 600 1vb/in.
Left support 0 0 0
1/8 point <301, Ou 9.8 | -56,900}f 1.5 0. 690 9.8 -0.090 10.5
1/4 point -393,000{ 6.4 ) -56,400]| 1.5 0.991 9.6 -0. 296 10.2
3/8 point -278, 000 5.5 | -56,400] 1.5 0. 555 9.1 -0.480 9.9
Crown 129, 000 9.8 | -56,200} 1.5 -0, 191 10.9 -0.530 8.8
5/8 point 354,000 | 10.4 | -56,000 ]| 1.5 -0.1785 10.6 -0.437 9.1
3/4 point 442,000 8.0 | -57,100]| 1.8 ~1. 007 8.3 -0.243 8.9
7/8 point 330,000 | 6.0 | -59,4C00) 1.8 -0.672 8.3 -0.062 9.0
Right support 0 -60,800 | 1.8 0 0
P, = 700 1b/in.
Left support 0 0 0
1/8 point -313,000 | 12,9 | -66,400]) 1.5 1.010 | 12.8 -0.137 13.2
1/4 point -408,000 | 9.8 | -65,700| 1.5 1.428 | 12.8 -0.460 13.1
3/8 point -278,000 | 5.1 | -65,700| 1.5 0.756 | 15.3 -0.719 | 13.1
Crown 139, 000 9.8 | -65,500| 1.5 -0.261 11.5 -0.792 13.3
5/8 point 388,000 | 10.7 | 65,400 ] 1.5 -1, 147 4.1 -0,656 13.4
3/4 point 464, 000 8.0 | -66,500| 1.8 -1.524 14.2 -0 352 13.3
7/8 point 352, 000 5.6 | -69,300! 1.8 -0.960 14.0 -0. 081 12.9
Right support 0 -70,900 1.8 0 0
Table C-4. Maximum Response From Dynamic Loading (Inelastic Program)
Axial Radial Tangential
Location Moment | Time Force Time | Displace-| Time | Displace- | Time
(in. -1b) [(msec) (1b) (msec) ment (msec) ment (msec)
(in.) (in.)
P, = 750 Ib/in.
Left support 0 0 0
1/8 point -317,000 | 12.9 | -71,100 1.5 1.214 | 19.1 -0.187 19.4
1/4 point -413, 000 9.7 { -70,400 ] 1.5 1.880 | 19.1 -0.603 19.3
3/8 point -279, 000 5.0 | -70,400 | 1.5 0.990 | 19.0 -0.968 19.3
Crown 148, 000 9.7 | -70,200 | 1.5 -0.346 | 20.0 -1.068 19.2
5/8 point 399,000 | 11,1 | -70,000 | 1.5 -1.561 | 18.0 -0.887 19.1
3/4 point 473,000 | 14.3 | -71,300 | i.8 -2.055 | 17.8 -0.462 | 19.2
7/8 point 355, 000 5.6 | -74,200 | 1.8 -1.262 | 17.6 -0. 098 19.2
Right support 0 -75,900 1 1.8 0 0
P, = 8001b/in
Left support 0 0 0
1/8 point -326,000 12,7 | -75,700 | 1.5 1.876 | 38.8 0. 291 40, 0*
1/4 point -428, 000 9.6 | -75,000 | 1.5 2,645 | 39.0 -0.898 40.0*
3/8 point -279,000 | 4.9 | -74,900 | 1.5 1.344 | 38.8 -1.423 40. 0*
Crown 152,000 | 10.0 { -74,800 | 1.5 -0.558 | 40.0* -1.567 39.2
5/8 point 407,000 | 11.1 | -74,600 1.5 -2.345 | 40.0* -1,320 40. 0*
3/4 point 492, 000 8.0 | -78,000 1.8 -3.082 | 40.0* -0.6517 39.0
7/8 point 364, 000 5.4 | -79,200 | 1.8 -1.845 | 40.0* -0.120 38.8
Right support 0 -81, 000 1.8 0 0

*End of solution; maximum values were not obtained.
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Appendix D
ANALYSIS FOR NATURAL FREQUENCIES AND BUCKLING LOADS

In the analysis of the two-hinged circular arch for its natural frequencies and buckling
i ..., the active continuous structure of Figure B-1 is reduced to a discrete framework
consisting of a series of rigid bars and flexible joints as described in Appendix C. The
mass may either be considered lumped at the joints or distributed along the bars. A uniform
static normal pressure may be introduced in the frequency equations; i.e., the frequencies
of the arch can be determined for free vibration or forced vibration. The theoretical devel-
opment of equations was performed by Eppink (Reference 15). Additional remarks are made
primarily for clarity and continuity of this report.

Derivation of Equations

In considering the uniform static pressure acting on the arch, the following additional
assumptions are made:

1. The arch maintains its circular shape under the external normal pressure.

2. The arch undergoes only a uniform compression under the external normal
pressure.

3. All measurements are taken from the compressed position of the arch,
4. The oscillation of the arch is small,
5. The effect of damping is negligible,

The above assumptions serve to linearize the vibration of the arch under uniform
normal pressure. The axial force, Pjt, can be expressed in the form

p. = -1

it 2chot% - N, (D-1)

where the first term represents the force due to uniform compression and the second term
represents the force due to displacements. By substituting Equations C-3 and D-1 into
Equations C-1 and C-2 and omitting the product terms of Ny and My, the following expres-
sions for Z;jr and Zjt are obtained:

iy fid

er = —(NJ. + Nk)sin% - -I]:T(Mi - 2Mj + Mk)cos%

e

+ wL cosg— +%wL(y’;k - wj)cot-gcos% (D-2)

2, = (N, - M) cos £ « 2(M, - M,)sin $

vl

- ‘%WL (ll'k + ll'j) cos (D-3)

103

e




ey B EC AN (T

e

LI

I L]

ren

LU o

e

ARG

If the axial deformation is taken into account, the components Wiy and th of the
external forces are established by noting that

-%(L + 6]) w

k=4
-
1]

B 3L e a)w

Substituting the above expression into Equations C-4 and C-5, and neglecting the product
terms of 8y, the following expressions for Wiy and Wjt are obtained

er = -chos% - -i-w(ék + Jj)cos% + %WL(wk - dlj)slﬂ% (D-4)
th = —%w(dk - dj) sing - -;-wL(wk + 'I’j) cos-g (D-5)

The components of the internal force, Zjr and Zjt, of Equations D-2 and D-J3 can be
expressed in terms of deformations § and ¥ by using Equations C-16 and C-17, The
resulting equations along with Equations D-4 and D-5 are then expressed in terms of displace-
ments by using the first-order approximations of Equations C-8, C-9, and C-12. The
resulting expressions for Zjr, Zijt, Wiy, and Wjt are then expressed in terms of displace-
ments Ajr and 4;.

Ata naturaf mode of vibration the conditions of simple harmonic motion are satisfied
for each particle of the system, and the equations of motion, Equations C-6 and C-7, become

o 2
mj Ajr = -w mj Ajr

[}
N
+

(D-6)

3
b.
i

£
8
=3

i
N
+
<

(D-7)

where w is the circular frequency of vibration,

Substituting the expressions for Zjy, Zji, Wjr, and Wjt into Equations D-6 and D-7,
simplifying by letting # denote the mass per unit iength of the arch and r the radius of
gyration of the arch cross section, and introducing the following notations

¢ = tan% (D-8)
oo () ©9
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'
A= (4c sin %)2 Eé‘l:wz (D-10)
k = 4csm® (§) “’T‘;i (D-11)

the following expression for the equation of motion in the radial direction is obtained:
o o206 gy - (a0 ne?)
[Ahr'*("lJ"’c Ajp + \8 + 2pc bip = P4 v pc )8y v by,

* C[Aht - @ p) by - 24 p) By, - “n]

= A4 vk [-(2 . ﬁ) A+ c% 4y, - (2 . é) a,. c(-Ait . Akt)] (D-12)

The corresponding equation for the tangentiai direction becomes

c [-Ahr + 2+ p) Air - {2+ p) Akr + A‘r]

2 2 2
* [‘c "m"p“it’z("*“ )Ajt_pdkt -c An]

= Ay - "[C (45 - 44) - (-4 - 24 - Akt)] (D-13)

The left sides of Equations D-12 and D-13 are applicable to joints 2 £ j £ n-2. The
boundary conditions must be considered in deriving the equations of motion for joints 1 and
n-1. Figure D-1 is a schematic representation of the equations of motion for the general
interior joint j and the joints near the supports.
A system of 2 (n-1) homogeneous linear algebraic equations can be obtained from
Equations D-12 and D-13 with specialized equations for the ioints near the supports. The .
system of equations can be written in abbreviated form as iollows: )

A4 - ABA - kCA =0 (D-14)

where A, B, and C are symmetric matrices of order 2(n-1), and 4 is a « .lumn matrix
of the displacement 4, and At. There are 2(n-1) characteristic roots and vectors of the
above equations corresponding to the natural frequencies and mode shapes of vibration of
the system.
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It should be noted that for free vibration the load parameter k is set to zero and
Equation D-14 becomes

AA - ABA =0

For the buckling loads of the system, the irequency parameter A is set to zero and
the following expression is obtained:

AA - kC4 =0

The mass of the system can be considered to be distributed along the bars of the discrete
framework instead of concentrated at the joints. The equations can be established by using
the Lagrange equations of motion. A detailed derivation is presented in Reference 16. The
resulting equations can be presented in abbreviated fcrm as follows:

AA - AB'A - kCa =0

where B' is a symmetric matrix of order 2(n-1). The terms AB'A can be obtained for the
equations of motion in the radial direction as follows:

1 .
A (cos g8, + 48, + cos $A4, + sin 4, - sin 4y, (D-15)
and for equations of motion in the tangential direction as follows:

A

Oz'u-

(- sin ¢Air + sin ¢Akr + CO8 ¢Ait . 4Ajt + CO8 ¢Akt) (D-16)

For geometrically symmetrical structures, the natural modes of vibration are either
symmetrical or antisymmetrical with respect to the line of symmet:ry of the structure. This
can be utilized to determine the complete set of natural modes and the associated frequencies
by solving two characteristic value problems, each of order (n-1) instead of one of crder
2(n-1).

Let joint k be located at the line of symmetry of the discrete framework, For
antisymmetrical modes, the radial displacement, 4y,, at joint k is zero, and

= Ay At Ay
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For symmetrical modes, the tangential displacement, Ay, at joint j is zero, and

4y = 4 it = %t

Figure D-2 presents the left side of Equations D-12 and D-13 for joints j and k in block form.
As an example, the frequency equations for a 12-bar system are presented in matrix
form in Tables D-1 and D-2 for antisymmetrical modes and for symmetrical modes,
respectively. In order that the same matrix equations be applicable to frequency as well as
buckling load calculations, three additional parameters, x, y, and z, are introduced.
For free vibration of concentrated mass systems

For free vibration of distributed mass systems

cos ¢ , z = %sin ]

»

"
(%1 1XY
>

¢
"
o>

For buckling loads

Computer Program

A computer program has been completed which can calculate either the natural
frequency or buckling load of an arch of uniform cross section based on the equations given
in Tables D-1 and D-2, The source program is written in FODRTRAN and can be carried out
on an IBM 7094 or IBM 1620I! computer. It should be ncted that the number of bars consid-
ered is limited only by the memory capacity of the coraputers. However, solutions for more
than 40 bars are not recommended considering the computer time involved and the very slight
increase in accuracy.

The natural frequency can be determined for either a concentrated mass system or a
distributed mass system. For natural frequency calculations, a uniformly distributed load
can be acting on the arch. A special case occurs when the natural frequency vanishes: the
buckling load for the system is obtained.

The source program can be subdivided into the following:

a. Determination of natural frequencies ard buckling load

b. Determination of natural modes
It is possible to divide the program so that a smaller computer can be used for the solutions.
To facilitate this operation, complete flow charts are given in Figures D-3, D-4, D-5, and

D-G for general analysis of arches, evaluation of matrices, search for roots, and vector
components. The source program in FORTRAN is given in Program D-1,
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Program D-1, Natural Frequency and Mode of Circular Arch

PROGRAM OF CiRCULAR ARCH ANALYSIS

PURPOSE OF PRUGRAMe TO EVALUATE xZ IN MATRIX OF AX=z0e
PROGRAM DETERMINES NATURAL FREGCUENCIES OF CIRCULAR ARCH
ANTI-SYMMETRICAL AND SYMMETRICAL MUDE SHAPES
BUCKLING LJAD AND DEFLECTEDL SHAPE OF THE ARCH
PROGRAM CONTRULLED BY VALUES OF IFREQ

IFREQ 1y CONCENTRATED MASS SYSTEM ANTI-SYMMETRICAL MODE
IFREQ 2+ CONCENTRATEL MASS SYSTEM SYMMETRICAL MOODE
IFREQ 35 DISTRIBLTED MASS SYSTEM ANT[=SYMMETRICAL MODE
IFREQ 4y DISTRIBUTID MASS SYSTIV. SYMMETRICAL MODE
IFREW 5¢ BUCKLING LOAD UF ANT[=SYMMETRICAL MODE
IFRES &9 BUCKLING LCQAD UF SYMMETRICAL MODE
MODIFIED 2% JUNE 19865 ¢ RICHARD He CHIU )

DUUBLE PRECISION AsXoeReDIUMPYDETsFUsF1leF2+F3
DIMENSION A(12512)9X(12)

FORMAT (154519489 D015¢893E1548)

FORMAT (/11X eGHROOUT 49X ¢BHRESTIDUAL 98X :5HFREQe 10X s86HPERIODY)
OC 1032 IFREQ=14+%

READ INPUT TAPE 5¢ CONTRUL CARD

READ (99 1UVVIINROOT o XOoFMAXSDELTAS TOL o XK
FORMAT(1%45E1548)

REAC INPUT TAPE S INPUT PARAMETERS

N=ORDER OF DETERVINANT

RC= RADIUS OF ARCH

PHI= INCREMENT OF CENTRAL ANGLE

RL= RADIUS OF GYRATION OF ARCH SECTION

(VEL IV}

Elagn]

READ (59 1U01) NeRCePHIsRLIUSE]
XL=2.%RC*SIN (Pril/24)

C2=SIK (PHI/24)7C05 (PH1/24)

FOR BUCKLING LOAD

IF (IFREQ~5) 1003+10062+1002

Cla(C2uxXL®#3)/(2,%E1)

GO TO 2000

CleXLena®y/{EI*COS (PH]/24,1%%2)

RHO= (XL/RL)##2

D0 1032 JROOT=1sNROGT

WRITE (&9 902)

BEGIN SEARCH FOR ROOT

IRET=1

IRETF=0

X1=X0

xX2=x1

GO TO 101s

Fl1=F2

WRITE (69 9QUL) IRETeX24F2

IRET=2

X2=x14DELTA

GO TC 1C16

IF(F1#F2)1G13+1013,41011

X1=x2

Fls¢2

WRIi. (he UL IRETIX2eFe

GO T0 1009

X3=x2

F3=f2

X4=X3

IRET=3

X0=sX3

FO=F3

WRITE (69 9U1) IRETX2,4F2
X2=X14(X3=X1)#F1/(F1=F3)

GO TO 1016 Continued
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3009

3006

3007
3008

E1VIVE)

3Gle
3011

3012
3013
3014

1017
1018
1019
1020
1021
1025

1026

109
1030

Program D-1. Natural Frequency and Mode of Circular Arch (Contd}

EVALUATION OF DETERMINANT OF ORDER N
Ao PLOTKIN AND wWse WILCOXSON

29 AUGUST 1963

DET=l,

DO 3013 K=2.N

KMlsK~]

SEARCH FOR NON=ZERO PIVOT ELEMENT

DO 3006 K1=KM] N
IFCA(KML oK1} }3U0T930U84+3GOT7

CONTINUE

DETERMINANT 1S ZERO

DET=0.

GO T0 3014

DIVIDE COLUMN bY PIVUTAL ELEMENT

DO 3008 K2=KN
A(K23K]1)2A(K2¢K]1)/7A(KMY 4K])
1F(KM1=K1)300943011,43209

MOVE PIVOTY ELcMe TO UPPER LEFT HAND CORNER OF REVDUCLD DETERMINANIT
UPDATE SION FOR INTERCHANGING COLUMNS
DET=-DEN

DO 3Cl0 KZ=KM]) N

DUMP=zA (K 24KM])

ALKZ29KM])I3A(KZ 4K])

A(KZ+K1)2DUMP

REDUCE ORDER OF DETZRMINANT BY ONE

DO 3012 [=KsN

DO 3012 J=Kabk

ACi o)Al o J)=AL] KM] I RA(KM] 4 J)
DET=DET®A{KM]Y,KM])

F2=PET2A(NsN)

GC TO(1005»1010+101T7)4IRET

SEARCH FOR ROOT HY METHOD OF NESTED INTERVALS
IFCABS (Xe=X2)-TOL)I1U2991029,1018
IF{X3)10194102U+1019

IFLABS (1e=X2/X%)=-TOL)I1U2921029+1020
IFIF1I*F3)1021410U21+1029
IF(F1%F211026»1029+1025

X1sx2

Xa=X1

F1=F2

GO TO 1015

X3sX2

Xa=X3

F3a=F2

GO TO 1015

IGNORE 1F ASYMPTOTE

IF(FMAX=ABS (F2))11004+1U04+10%0
XF=X2%x2

P=1s/XF

wRITE (6 GULIJROOT aX29F2eXF 4P
GO 10 1uls TO EVALUATE ELEMENTS OF COEFFICIENT MATRIX N
{RETF=]

GO TC 1016

SUB-PROGRAM TO SOLVE HUOMUOGENEQUS HIMULTANEQUS EUUATIUNS (RANKEN-11
We WILCOXSON

30 AUGUST 1963

OUTPUT MATRIX A

706U WRITE (6 75.0)

Cortinued
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7500

7001

7022
7003
7004
7905

7006

7009
7016
7011
7012

7013

7014

5004
7501

5005

5006
5007

Program D-1. Natural Frequency and Mode of Cir:ular Arch (Contd)

FORMAT (14X+8HMATRIX A)

DC 3 JJ=1sN

DO 3 1=l

WRITC (69 2)JJellsAtIIN]N)

FORMAT(2HA(s134s1H»13+2H)=D14,8)
NCTE THAT N-MZ=RANK OF COEFFICIENT MATRIX
MZ2=C

DO 7028 Ml=1l,sN

M5=M]1-M2

SEARCH FOR NON=ZERO PIVOT ELEMENT
00 70C1 M2=M5,N

IF(TOL-ABS (A(M2+M1}))7002,7001:7001
CONTINUE

MZ=MZ+1

GO TO 7028

IF(M2-M5)7003,700547G03

INTERCHANGE ROWS TO QOBTAIN NON=ZERO PIVOT ELEMENT
DO 7004 M3=M1,N

DUMP=A(M5,M3)

A{M54M3)1=A(M2,M3)

A{M24M3)=DUMP

00 70Co M3xM]1sN

M2=N-M3+M]

A(MS 4M2)=A(MS54M2) /AIM5,M])

DO 7018 Ma=1.N
IF{Ma=M,)TU0T74T701897007

00 70uU8 M3=M1,N

MZzN=-M3+M]
A(M4yM2)=A(MLyM2) ~A(MGM] ) RA(ME,M2)
CONT INUE

CONTINUE

WRITE OUTPUT TAPE 6s TOLERABLE ZERO
WRITE (65 51A(NIN)
FORMAT (1SHTOLERABLE ZERO=D15,8)
VERIFY THAT RANK IS N-1
1F(MZ=1)700957013+700%

Mlz=N=-MZ

WRITE (6s 7010) M)
FORMAT (11HERR RANK= 91 %)
WRITE 6y 7U12)

FORMAT (14HZERO COMPUNENT)

VERIFY THAT ALL SOLUT'ONS ARE NON-Z2ERO
NM]1=N-1

D0 7014 Mi=1sNM]
IF{1e=AtM1sM1))T7011470144+7011
X(Mi)==A{MLlsN)

X(N)=1.

CALCULATE RESIDUALS BY MATRIX MULTIPLICATION
EVALUATE ELEMENTS OF MATRIX

IRETF=2

GO T0 1016

WRITL (6s 75vl)

FORMAT(17H GSUOLUTION VECTOR#15X415HRESIVUAL VECTOR)

DO 50ué6 I=14N

Rz0e

DO 5005 J=1sN

R=A(I s JIRX{J)+R

QUTPUT

WRITE (6s SUOTITeX(I)s!aR

FORMAT (2HX( +1242H)=9014e8910X92HR( 91292H)=9D014%4.81}
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101le

2317

2018

2019
2020

121

122

102

105

103

Program D-1.

CONTINLT
Go TC 1690

Natural Frequency and Mode of Circular Arch (Contd)

USER MUST INLERT FUNCTION EVALUATION STATEMINTS AFTER 1016

AND THEN COMPILE AN OBJLCT PROGRAM
EVALUATION ROUTINE FOR MATRIX ELFMENT,
CONTINUE

DO 2uUl7 I=lsN

DO 2017 J=l N

AllsJ)20e

If ( 1FREQ~5) 2ul9:2V1842018
ALPHA=C1#Xx2

G0 TO 2020
ALPHAZC1%39,478B4]17%X2%84
Nl=N~l

NWzN1l/s2
Allel)=Sat2#RHO®C22C2
JI1z=Nw+l

AtleJl=C2
A(J19J1) =24 #RHO+C2#C2

GO TO (1219122+121412241214122)1,4:1FREQ
ANTI=-SYMMETRICAL MODES
AINWINW)=AT141)
A(NAsNL)==C2
AINlsNYI=ACJY W J1
A(NW=1l4N)==C2
A(NWsN)=(2# (2,+RHO)
A(N=2yN)==C28(C2
A(N1yN)==RHO
A(NsNY~A L J1YeC22C2

GO TO 123

SYMMETRECAL MCDES
A{NWINW)I=A()s1)+2,
A{NWsN1)= C2
AINLsN1Y=A(J1eJl)1+2.#C2%C2
A(NW=14N)I=1,
AINWsN)=RHO®C2#C2 -4,
A(N=24NI= C2
A(NIyN)==C2%(2,4,+RHO)
A(NsN)=A{1s1l)+],

I1=1

00 101 J=24¢NW
AtleJ)aRHORC2%(24,
[=z]+]

I=1

DO 102 J=3eNW

Alled)=1s

[=]+1

J2=Nw-1

D0 109 Js24J2
AlJsJd)=A(lel)+],

1=:

J1=NwW+2

D0 103 J=JieN1
AlleJd)=zC2#(24+RHO)

{=1¢1

1=1

J1=Nw+3

00 104 J=J1lsN1
Allsdy)=e=C2
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Program D-1. Natural Frequency and Mode of Circular Arch (Contd)

106 I=]+]
=2
J1=Nw+]
J2=N=2
DO 106 J=J14J2
AlTeJ)e=C2%(2,+RHO)
106 1=1+1
1=3
J2=N=-3
DO 107 JmJleJ2
AllesJ)aCe
107 I=1+]
I=NW+1l
J1aNw+3
0O 108 J=JlsN1
AllsJ)==C22C?
108 Isl+1
I=Nw+]
J1=zNw+2
DO 109 J=Jl Nl
AlleJ)==RHO
109 J=i+}
Jl=Mw+e2
J2=N=-2
DO 110 J=J14+J2
110 AGJsJ)122 % (RHO+C2%C 21
NW=NWel
GO TO (125+125+131+131+140,140)1IFREQ
C BUCKLING LOAD
140 ASNs-ALPHA®C?
- DO 143 J=NwsN
143 AtJeJ)=AlJeJ)=CZe®ALPHA
J1lsNw+]
DO 144 J=JlsN
144 A(J=1eJ)=A(J=]14J)+ALPHA
ACS==-ALPHA# ({2.+1e/7(C2%C2}))
ALPHA=ALPHAR®RZ 4/ (C2%C2)
J2=zNw=-1
DO 141 J=2,J2
141 AlJ=14J)=A0J=14J)=ACS
DO 142 J=1,4J2
142 AtdeJ)zAl Iy J)~ALPHA
GO TO 1139
C CONCENTRATED HMASS SYSTEM
125 DO 125 J=1,N
126 A(Js YAl JeJ)-ALPHA
GO TO 127
C DISTRIBUTED MASS SYSTEM
131 ASN=ALPHA#®SIN (PHI)/6.
ACS=ALPHA#COS (PH1)/6.
ALPHA=ALPHA#2,/73,
DO 132 U=1.N
132 A(JsJ)=A(JsJ)=ALPHA
J2=Nw-1
D0 133 U=z24J2
133 AlJ=14J1=A(JU~1,4J]1=ACS
JiaNw+}
DO 134 JzJlsN
134 A(J=1eJ)=A1U=-19J)=ACS

Continued
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Program D-1, Natural Frequency and Mode of Circular Arch (Contd)

139 Je2=N-2
1=2
DO 135 J=NweJ2
AlloJ)zA(]9sJ)=ASN
135 I=1+1
J1=Nw+1
1=l
DO 136 J=JlsN
AlTeJ)zA([9J)+ASN
136 1=l+1
127 DO 111 [=24N1
NCs[-1
DOl11J=] eNC
111 Atls)=A()W])
DO 112 J=]1,4N1
112 AUNsJI=2.%A(JeN)
IF {IRETF=11 3005+7000,5C04&
END
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Presentation of Numerical Results

The input parameters used in the numerical analysis of the natural modes and the
associated frequencies of the two-hinged circular arch are the sanie as those used in the
elastic program of Appendix C. In the solutions presented in this section, the effects oi the
number of bars and the assumptions regarding the mass distribution of the discrete frame-
work are studied.

Solutions for increasing the number of bars from 8 to 40 in the discrete framcwork,
considering ihe mass to be concentrated at the joints, are tabulated in Table D-3. The
corresponding resuits for the distributed mass system are given in Table D-4. The first
six natural frequencies of the antisyminetrical and symmetrical modes are presented in both
tables.

A comparison of the antisymmetrical modal frequencies for the concentrated mass and
distributed mass systems is presented in Figure D-7. The frequencies were plotted against
the numbex of bars used in the discrete framework. A corresponding comparison of the
symmetrical modal frequencies is presented in Figure D-8. It should be noted that both
assumptions regarding the mass distribution of tne framework lead to the same asymptotic
frequency. However, the asymptotic frequency can be obtained much more rapidly by the
distributed mass assumption.

As shown in Figures D-7 and D-8, nearly all the asymptotic frequencies are obtained
for fewer than 40 bars, For practical purposes, the solutions of the 40-bar distributed mass
system may be regarded as “'exact'' solutions for the arch considered in this report.

The normalized natural modes of vibration of a 40-bar distributed mass system are
given in Figures D-9 and D-10 for antisymmetrical and symmetrical modes, respectively.
1t is observed that the normalized modes are predominantly flexural. However, the axial
deformation of the second antisymmetrical mode is significant and is closely related to the
"breathing” mode of a complete ring having the same cross-sectional properties. A
comparison can readily be made by considering the frequency of vibration of a complete ring of
uniform cross section as given by the following expression:

o oL [EA
2m uRz

which is calculated to be 317.3 cps for the cross-sectional properties of the arch. This value
is comparable to the frequency of 301.1 cps for the second symmetrical mode of the arch,
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Table D-3.

Natural Frequencies and Periods of a Two-Hinged Arch

Concentrated Mass

Number of Bars

Period
Mode 8 12 18 20 24 32 40 ™
Frequercies for Antisymmetrical Modes (cps)
1 57.66 58.89 $9. 30 59.51 59.63 59.72 $9.79716.73
2 224.5 250.3 259.8 264.2 266.7 289.3 270.4 3.70
3 392.1 510.8 555.6 575.9 586.6 596. 7 601.1 1.66
4 644.3 655.4 664.2 669.5 673.2 677.5 679.9 1.47
5 --- 780.3 922.3 994.6 | 1,036 1,078 1,098 0, 811
6 ~-- 970.4 |1,276 1,441 1,538 1,635 1,682 0. 595
Mode Frequencies for Symmetrical Modes (cpe)
1 128.5 185.2 137.5 138.6 139, 2 139.8 140.1 7.14
2 286.1 295,8 298.1 299.3 299.17 300.2 300.4 | 3.33
3 329.2 388.0 411.5 422, 8 429.3 435.5 438.8 2.28
4 414.3 651.9 739.2 782.6 806.9 831.6 843.1 1.19
5 --- 886.5 |1,099 1,191 1,208 1,211 1,213 0. 824
6 1,172 1,197 1,208 1,233 1,288 1,350 1,382 0. 724

*Natural period (msec) based on 40-bar solutions.
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Table D-4. Natural Frequencies and Periods of a Two-Hinged Arch

Distributed Mass

Number of Bars

Period
Mode 8 12 16 20 24 32 40 ™
Frequencies for Antisymmetrical Modes (cps)
1 59.83 59. 86 59. 86 59, 86 59. 86 59,86 59.86 ] 16.71
2 270.2 272.0 272.3 272.5 272.5 272.5 272.5 | 3.63
3 583.1 607.1 608.5 608.7 608.7 608.7 608.7 | 1.64
4 877.5 685.4 685. 6 685.4 685, 2 6884.7 6e4.7 1.46
5 --- |1,095 1,125 1,131 1,132 1,133 1,134 0.882
6 --- | 1,569 1,728 1, 752 1,757 1,759 1, 759 0.569
Mode Frequencies for Symmetrical Modes (cps)
1 140.3 140.5 140. 5 140.5 140,5 140. 6 140.6 | 7.11
2 302.3 301.6 301.4 301.1 301.1 301.1 301.1 | 3.32
3 432.1 442.2 443.4 443.6 443.8 443.8 443.8 | 2,25
4 733.0 849.6 860.4 862.8 863.4 863.9 864.1 1,16
5 --- 1,233 1,226 1,222 1,220 1,218 1,217 0.822
6 1,257 1, 347 1,420 1,433 1, 436 1,438 1,439 0.695

*Natural period {(msec) based on 40-bar solutions.
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Figure D-9,

third ontisymmetrical mode of vibration, fn = 609 cps

Antisymmetrical modes of two-hinged arch,
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. third symmetrical mode of vibration, fn® 444 cps

Figure D-10. Symmetrical modes of two-hinged arch,
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Appendix E
SIMPLIFIED ANALYSIS OF A CIRCULAR ARCH

In the static analysis (Appendix B) of the two-hinged arch of Figure B-1, the distributions
of momernts and stresses are basically antisymmetrical and the axial force along the arch
does not vary appreciably. Inthe dynamic analysis of Appendix C, the response of the arch
is largely contributed by the first antisymmetric mode of vibration; the axial force also
remains essentially uniform along the arch. The findings squest that a simplified analysis
and design procedure similar to those proposed by Newmark ,19 can be used. All notations
in this appendix conform to the previous definitions unless otherwise noted.

Static Analysis

Assuming that the principle of superposition holds true in the elastic range of the arch
response, the uniform load distributed over one-half the arch length can be obtained by two
components as follows:

1. Symmetrical loading uniformly disiributed over the entire arch span with a
magnitude equal to one-half the original load.

2. Antisymmetrical loading consisting of an inward uniform loading distributed over
one-half the arch length and an outward uniform loading over the other haif of the
arch length, The magnitude of the antisymmetrical loading is also one-half the
original load.

The sum of the two components is equivalent to the original loading condition,

For a circular arch with uniform cross section along its length, the critical section is
at the quarter point of the loaded half of the arch. The static axial force at the critical
section due either to symmetrical or antisymmetrical loading is given by the approximate
expression as follows:

P, = wR (E-1)

For the symmetrical loading, the maximum bending moments at the quarter points are
given by the approximate expression

2
¢
__0_2 WRZ

x>

For the antisymmetrical loading, the maximum bending momeut at the quarier point
under the inward ioading is given by the approximaie expréession

M, =

L.
216

M =3i2—J——wR

2 2
¢0
- ()

(E-3)
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and the corresponding buckling load, wep, can be obtained from
2
. ferm_ _ ,)EL .
Wor -(¢2 ' )Rs (E-4)
o

Stress amplification as a result of the tendency of the arch to buckle under the axial force can
be expressed by the amplification factor

(E-5)

w
cr

The amplification factor will be used as a multiplier for the moment terms of Equations E-2
and E-3. The total static moment is the sum of Mj and M3; the stresses and strains
caused by the bending moment and the axial force can be obtained by applying Equations B-30
through B-33. The static yield condition may be established with the aid of stress-strain
curves such as shown in Figure B-8,

Dynamic Analysis

The above static expressions of Equations E-1 through E-3 are used for the simplified

dynamic analysis by introducing a dynamic amplification factor, D, for a step function load,
as follows:

where T is the appropriate response period of each of the three functions considered. The
amplification factor, D, reflects the time-variant characteristics and the frequency of each
function. The above expression can be expressed in terms of the functions of a variable,

x, as follows:

D) =1 - cos:f%xt) (E-6)

where x is the particular variable of Equations E-1 through E-3.

As shown in Appendix C, the frequency of the axial force corresponds to the '"breathing”
mode of a complete ring. The simplified dynamic response of the axial force is given by the
expression

° ) = [1 - cos 1?(’;,‘()] P, (E-7)
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where the period, T(P), is given by

- 4R
T(Pt) = 27 o

The moment due to the symmetrical loading varies at the frequency of the first

symmetrical mode of vibration. The time variant response of moment at the quarter points
can be expressed as

2t
Ml (t) = [1 - COS m] M1 (E-8)

where the corresponding period is given approximately by

2(a¢)2
TM) = —52 A YET

where Ap, is given in Equation E-5,

The moment due o the antisymmetrical loading varies at tte {: equency of the first
antisymmetrical mode of vibration. The time-variant response of moment at the quarter
point under the inwurd loading can be expressed as

2nt
M2 t) = [1 - cos F(_M—z)] M2 (E-9)

and the corresponding period is given approximately by

T (Mz) =

where

and
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The total time-variant moment is obtained by summing the results of Equations E-8
and E-9 at each time. The stresses and strains at the quarter point under the inward loading
can be obtained by the same procedure used in the static analysis.

It should be noted that the maximum dynamic amplification factor, D(x), of Equation
E-6 is two for a step function load.

Presentation of Numerical Results

A computer program {(Program E-1) based on the procedure described in the previous
sections was used to obtain the numerical soluticn of the simplified analyses. Comparisons
of the natural periods of vibration for the first antisymmetrical mode, the first symmetrical
mode, and the second symmetrical mode are m:.de between the simplified analysis and the
corresponding values of Appendix D, and are presented in Table E-1. Close agreement is
obtained in all cases.

Comparisons between the simplified analysis and the more rigorous analysis of the
dynamic response of bending moment and axial force as given in Appendix C are presented
in Table E-2, Similar comparisons for static values are presented in Table E-3, Compari-
sons of the dynamic response of axial forces show excellent agreement. The difference in
the static values of axial forces i8 a result of the elastic support conditions introduced in
Appendix B. The static bending moments of the simplified analysis are slightly higher than
the corresponding results of Appendix B. The large difference (about 29 percent) in the
dynamic moments is due to the damping effects of the system considered in Appendix C,; the
simplified analysis did not consider damping.

Table E-1. Comparison of Natural Periods of the Simplified Analysis
to the Results of Appendix D

Antisymmetrical Symmetrical
{msec) (msec)
Load
(Ib/in.) First Mode First Mode Second Mode
1 2 1 2 1 2
200 17.0 16.7 6.3 7.1 3.0 3.3
400 17.3 16.17 6.4 7.1 3.0 3.3
600 17.6 16.17 8.5 : 7.1 3.0 3.3

1 - Results of the simplified analysis

2 - Results of Appendix D
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Table E-2.

Comparison of Maximum Dynamic Moments and Axial Forces
of the Simplified Analysis to the Results of Appendix C
(at 3/4-point of the arch)

Simplified Analysis Appendix C
Load
(b/in.)| Moment | Time | AXRl | 7ime | Moment | Time pxial | Time
(in. -1b) | {msec) (ib) {msec)| (in.-lb) |[(msec) (1b) (msec)
200 204, 000 9.0 19, 100 1.8 161, 000 7.2 19, 000 1.1
400 415,000 9.2 | 38,100 1.6 | 327,000 7.2 38,100 1.7
600 634, 000 9.4 57,200 1.6 442,000 8.0 57,100 1.8
Table E-3. Comparison of Static Moments and Axial Forces
of the Simplified Analysis to the Results of
Apperndix B
Moments Axial Forces
Load (in. -1b) (1b)
(1b/in.)
1 2 1 2
200 103,500 95, 300 9,600 8,500
400 210,700 194, 200 19, 200 17,000
500 266, 300 245, 200 24, 000 21,300

1 - Results of the simplified analysis

2 - Results of Appendix B

133

S LR

e ——




- sugrony

o U g M

|
T

LT N N LI e R N RY ST T v s

1 ugyar

Pa

W A

oS0 v

11

Program E-1. Simplified Analysis of Circular Arches

SIMPLIFIED ANALYSIS OF CIRCULAR ARCHES
DIMENSION T(3)eX(3)sFT(3)4E(a)

FORMAT (14+6€E1246014)

FORMAT (/144234 HALF LOADED ARTH AT,FB842+6H LRZIN/}
FORMAT(/76H TIMESX&4HAX FTXGHMIMAX)TXSHSTIT)TXSHST(B)IBX4HS(T)IBX
1 4HS(3) /)

FORMAT (FB40646E1246)

FORMAT (/9X2HEAIUX2HMUIUX3HEAYIXIHSUMOXZHE ] /)

FORMAT (/5H Rx9C12e693MHPHIOT4£120635H PCR24E12e695H FAX=43E1246%
FORMAT (5H Nz9E124609H M5z 9E124695H MA=E1266)
FORMAT (5H TNzooEl2e695H TMS=4E126695H TMAZ4E1246)
READ CONTROL CARD

READ los NI+RPHIOWPODOP+TODToNJ

E1=0,

EA=C,

E‘YIOO

Uit=0e

PUNCH 5

DO 11 L=1l46

READ 1o JoMeBsYeE(L) D

A=H#03

UM=UMeAR490,/(17284%38644)

AY=ARYRE(L)

EI=ET+AYRY+ARHBHRE (L) /124

EASEA+ARE(L)

EAYSEAY+AY

PUNCH 19 LsEASUMAYEAYSEL

Cl=EAY/EA

C2=0-C1

€1=E1-FA=C1#()

PUNCH 1y LaSAgUMCl9C24sE1
P1=341415927

NY 32 1=1eNI

P=PO+0OP

X(1)=P#R

C=2+2P1/PHIO

PCR=E[#{C#C-1,)/Ra#)
FAX=1l4/7(14=~P/PCR)

S5=FAX#(REPH]O)*#%2
XK{21=5%P/((1le=(2e¢/7(34#C)IIRR2)%216,4)
X{3)1=S2P/{(le=16/7(C#L)1+324)
T(l)=2.#P]#R*SQRT(UM/EA)
S=S#SQRT(UM/EL)

TUZ)22.%5/(9e%P])
Cl=(C#Cele5)17(C2C=1,41)
T(3)=CIRS/(2e%F])

PUNCH 65 RsPHIQPLR:FAX

PUNCH 79 X{1)eX(2)sX(3)

PUNCH 89 TU1)sT(2)sT1D3) Continued
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Program E-1. Simplified Analysis of Circular Arches (Contd)

2l

3
32

pO=pP .

Pz %P

PUNCH 24 1,P

PUNCH 3

TO=z0,

DO 31 J=1eNy

XT=TO+DT

DO 21 K=1»3

AF =]l a=COS{2.®PI®#XT/T(K))
FTIK)=X (K)#AF
XMsFETE214FT (N
STeFTU11/Fa+xMaC) /F]
SB=FTL11/FA-XMRC2 /51
STT=STeE(2)

STB=SBeF e

PUNCH &y XToFT(1)eXMaOT43E0LTT45Td
TO=XT

CONT INUF

PAUAT

END
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Appendix F
PHOTOGRAPHS OF TESTED ARCHES
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